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Preface

The eighth edition of Cioffari’s Experimenis in Col-
lege Physics s, like its predecessors, intended for use
in the laboratory segment of either a calculus- or
algebra-based freshman physics course. The present
revision features a rewriting of experiments in order to
improve procedures and simplify data-taking. Thus an
audio signal generator has been specified for Experi-
ments 38 and 39 on vacuum-tube and transistor
amplification; a special thermionic diode has been in-
troduced in Experiment 36 on diode characteristics;
and this latter experiment has been separated from the
one on rectifier circuits (Experiment 37) so that either
or both can be done, but neither is so long that it is
difficult to finish in a normal laboratory period. This
division has allowed the zener diode and some of its
applications to be included, and in fact, Experiments
35-40 constitute a brief introduction to electronics that
can relieve the instructor of the necessity of fitting
some mention of this subject into the very tight sched-
ule of the lecture part of the usual first-year physics
course.

Two new experiments have been added—one on
Coulomb’s law (Experiment 23) and the other on field
plotting (Experiment 24)-—to cover the electrostatics
gap of earlier editions. Quantitative experiments in
electrostatics are always difficult because of the prob-
lem of measuring quantity of charge; the Coulomb’s
law experiment is really a measurement of the force
between the plates of a parallel-plate capacitor, but at
least the theory of this force is a direct consequence of
the inverse-square force law between point charges.
Moreover, the measurement is made using a simple
attachment to the current-balance apparatus specified
in Experiment 25 for the fundamental law of the mag-
netic force between parallel currents. A new procedure
allowing a much more accurate determination of the
force between the plates or the wires at a given spacing
is presented in both these experiments.

Users of previous editions have felt a need for
greater emphasis on the use of SI units and on the
distinction between mass and weight. These comments
have been taken very much to heart in the preparation
of the present edition, and a special section of the
Introduction is devoted to these topics. The fact that
mass and weight are two very different things is de-
scribed in some detail and is further pointed out when-
ever it comes up in the experimental work. Note is also
taken of such practical considerations as the fact that
balances (which really measure weight) are usually

calibrated in grams, and the advantage of using centi-
meters, millimeters, or Angstrom units in cases where
the lengths in question make it inconvenient to quote
them in meters. Even the gauss gets introduced, since
magnetic field strengths are so often given in this unit,
but its relation to the tesla and the tesla’s being the SI
unit that must be used in all the equations of electro-
magnetism are carefully pointed out. Hopefully the
new edition will succeed in helping the student avoid
units problems and the all-too-prevalent confusion
about mass and weight.

Finally, the popularity of the Apparatus Notes in
the seventh edition has brought about their expansion
into a separate Instructor’s Guide, which features
more details on the apparatus, including construction
notes for certain items that are better built than pur-
chased, some sample data, and answers to the prob-
lems in the Questions sections. [ hope that the new
manual will be a great help both to instructors charged
with setting up a laboratory from scratch and to veter-
ans of many years of experience with first-year physics
COUTSES.
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Introduction

The purpose of the physics laboratory 1s to supply the
practical knowledge necessary for a well-rounded un-
derstanding of physics and the physicist’s way of look-
ing at the universe. A further aim is to develop famil-
iarity with the experimental method of scientific
investigation and to give you experience in the actual
handling of laboratory apparatus. It is one thing to
study a certain model of some physical phenomenon
and deduce that certain results should be observed It

INSTRUCTIONS

is quite another to set up an experiment in which these
observations can be made and thus produce data on the
basis of which the model’s validity may be tested. In
particular, obtaining experimental results depends on
your ability to make accurate measurements of phys-
ical quantities in the real world. A major purpose of
every experiment in this book is to provide practice in
doing so.

The instructions for each experiment include some ba-
sic theory on the phenomenon to be investigated and a
description of the procedure to be used. You should
study these carefully before coming to the laboratory
to avoid waste of valuable laboratory time figuring out
what should be done. You will be told well in advance
which experiments are to be performed and the date for
which each is scheduled so that there will be time for
proper preparation. The necessary equipment will be
laid out at each assigned place in the laboratory. Miss-
ing or defective apparatus should be reported to the
laboratory instructor immediately. The instructor
should also be consulted if you have any questions
about the experiment.

Record all observations and data in the blank ta-
bles provided for this purpose in each experiment. Col-
umns in these tables are already suitably labeled, but
be careful to note the units in which each of the ob-
served quantities is measured. Instruments should be
read to the limit of their possibilities by estimating the
last figure of the reading, that is, the fraction of the
smallest scale division. Record each measurement di-
rectly on the data sheet exactly in the form in which it
is made without any mental calculation. Do not use
“scratch” data sheets from which data are to be tran-
scribed onto the blank ones provided in this book.
Very neat data sheets can be made out this way, but
mistakes can also creep in. The instructor is interested

CARE OF APPARATUS

in an original data sheet and is willing to put up with
a certain amount of sloppy penmanship in order to see
the direct recording of the actual data taken in the
laboratory.

Whenever feasible, make calculations in the
spaces provided in the manual. If the required com-
putations are too long, complete them on a separate
sheet of paper, and include it in the report. Each set of
calculations should be headed by the pertinent equa-
tion so that anyone reading the report can see what
mathematical operations are being performed and
why. An electronic calculator of your own may and
indeed should be used, but be caretul. Erroneous en-
tries produce erroneous results, and all numbers should
be looked at to be sure no careless mistake has crept in.
A quick order-of-magnitude check by hand is some-
times useful, but bear in mind that practice in arith-
metic is not an important goal of the physics labora-
tory.
The questions at the end of each experiment are to
be answered in the spaces provided for this purpose.
Use proper English so that communication between
you and a reader will not be impeded. Complete all
calculations and as much of the remainder of the report
as possible during the laboratory period. However,
unfinished reports may be completed outside the labo-
ratory and should be handed in at the time and place
specified by the instructor.

The apparatus provided with each experiment has been
set up to work properly in the arrangement described
for that experiment and is in some cases very delicate.
Use extreme care in handling it. The instructions for

each experiment include a list of the required equip-
ment, and you should check this list against the items
on the work bench to make sure everything necessary
is there and in good condition. Anything missing or
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viii INTRODUCTION

broken should be reported to the instructor. At the end
of the period, check the apparatus again and leave it
neatly arranged.

Whenever an experimental setup has been assem-
bled, it should be checked before being placed in oper-
ation so that any mistakes that might keep it from
working properly or that might cause actual damage
can be found and corrected. In particular, electrical
circuits should be examined carefully for proper wir-
ing. Application of power to a circuit containing wir-
ing errors can cause serious damage. The source of

THE REPORT

power (battery or power supply) should always be con-
nected last, and the circuit should be checked and ap-
proved by the instructor before this final connection is
made. Special care should be exercised in setting me-
ters to the proper range, as these items are expensive
and easily destroyed if excessive current is allowed to
pass through the movement. Whenever the range of a
meter or any wiring in a circuit is to be changed, the
source of power should always be disconnected first to
eliminate the possibility of electrical shock or damage
due to a temporary wrong connection.

You must prepare a report of the work done in each
experiment and hand it in at the beginning of the next
laboratory period or at some other time designated by
the instructor. The report will be graded and returned
as soon as possible, after which it may be kept in a
folder or binder for future reference. The report should
include:

1. A title page. This should carry your name, the
date, and the name and number of the experiment.

2. The instruction sheets. These are the pages de-
scribing the purpose of the experiment, the the-
ory, the apparatus, and the procedure. Per-
forations allow these pages to be easily torn out of
this book for inclusion in the report.

3. All original data and observations. As already
noted, these are entered in the blank data tables
provided in each experiment. The data table
sheets are also perforated so that they can be easily
removed from the book.

4. All the required calculations. Make these in the
spaces provided. The calculation sheets are then
detached along their perforations for inclusion in

UNITS

the report. If extra calculation pages are used,
include them in the report in the proper order.

5. Graphs and diagrams, whenever they are re-
quired. Graph paper pages are provided as needed
in this manual and are also perforated so that they
can be easily detached and inserted in the report.

6. A summary and discussion of the results. The
summary is included in tabular form under the
data. It usually involves a comparison of the com-
puted results with the accepted values together
with the percent errors involved. You are encour-
aged to add a brief discussion of the sources of
these errors and any other comments you would
like to make about the working of the experiment.

7. Answers to the questions at the end of the experi-
ment. The answers are written in the space pro-
vided after each question. The question sheets are
then torn out along the perforations and added to
the report. Take care to use complete sentences
and in general to make the answers as clear and
readable as possible. Use extra sheets if needed
and then include them in the proper order as in the
case of the calculations.

If the properties of our physical world are to be in-
vestigated quantitatively, units must be introduced in
terms of which the quantities we wish to measure can
be stated. We are all familiar with units of length such
as feet, inches, and centimeters and units of time such
as hours and minutes, but because physics is a precise
science, we have to look at such things more carefully
and be very precise in our definitions.

Although the choice of units is quite arbitrary, two
paramount considerations must be observed when such
choices are made: (a) The chosen unit must be of a size
that is convenient to use for the proposed mea-
surements, and (b) everyone must agree on its
definition. This latter requirement is accomplished by
international agreement. The most recent conference
for this purpose (the fourteenth) was held in 1971. The
so-called fundamental units of length, mass, time, and
electric current were agreed upon as a result of these

conferences. In the case of length. the meter was estab-
lished as the basic unit and defined in terms of the
wavelength of the light emitted by the krypton 86 atom
when undergoing a transition between a particular pair
of its allowed levels of energy. Note that such an
agreement involves a definition that is accessible to
everyone—Xkrypton atoms are all identical and anyone,
anywhere in the world, can get some krypton and fol-
low the prescribed procedure for determining the
specified wavelength. An identical situation arose in
the case of the second, the basic unit of time. The
standard second has been defined in terms of the period
of a certain frequency observed in the cesium atom,
The basic unit of mass, on the other hand, is the kilo-
gram, which everybody has agreed is the mass of a
platinum-iridium cylinder kept in the vaults of the In-
ternational Bureau of Weights and Measures near
Paris. These units are called fundamental. not because



physics gives them some fundamentally special status
but because we can express all other units in terms of
them. Thus velocity is measured in meters per second
(m/s), acceleration in meters per second per second
(m/s?), and force in kilogram-meters per second per
second (kg-m/s®). In the case of a unit like force,
which is an unwieldy combination of fundamental
units, a special name is given to represent that combi-
nation. It has become customary to honor famous sci-
entists by using their names for this purpose; thus our
unit of force is called the newton (after Isaac Newton)
and is defined as a kilogram-meter per second per
second.

The meter, the kilogram, and the second suffice to
give us all the units we need for measurements in
mechanics. But electricity introduces a new physical
quantity, electric charge, for which we need an addi-
tional fundamental unit. Actually, because a given
amount of charge is hard to determine precisely, the
International Conference agreed instead on the size of
the ampere, the unit of electric current. Clearly, since
by definition of current an ampere is a unit of charge
going by in a second, and since a second has already
been defined, a precise definition of the unit of electric
charge is immediately obtainable. It is called the cou-
lomb after the French physicist Charles Augustin Cou-
lomb, just as the name of the unit of current honors
André Marie Ampere.

Although the meter, the kilogram, and the second
are convenient in size for measurement of the lengths,
masses, and times encountered in everyday life, both
smaller and larger units are needed in many areas of
physics. Accordingly, a system of prefixes indicating
multiples by powers of ten is used to express such
quantities. These prefixes are listed in Table 111 at the
end of the book. Some common examples are the cen-
timeter (107* m), the millimeter (10> m), the kilome-
ter (10’ m); and for time, the millisecond (10™* s), the
microsecond (107° s) and. in this day of electronic
circuitry, the nanosecond (107° s). Note that the stan-
dard unit of mass is the kilogram, not the gram, al-
though this presents no particular problem, a standard
gram being a mass of 10 * kg. Conversion to other
units in common use but not in the agreed-upon sys-
tem, such as the foot, the mile, the minute, and the
hour are given in Table II at the end of the book, which
points out that in the so-called English system the unit
of length is now defined by making the inch exactly
2.54 cm.,

The system agreed upon at the 1971 International
Conference and described earlier is called the SI sys-
tem, an abbreviation for the full French title “Systeme
Internationale d’Unites.” Because the meter, the kilo-
gram, the second, and the ampere (and hence the cou-
lomb) are its fundamental units, the SI system is essen-
tially identical with what was previously called the
MKS system (for meter-kilogram-second). The only
difference, in fact, lies in the precise definitions of the
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meter and second described above. These definitions
superceded earlier, less precise ones, but the number
of wavelengths of the krypton light making up a meter
and the number of cycles of the cesium frequency
making up a second were chosen to agree with the
earlier definitions of these units within the precision
already established. Thus existing secondary standards
did not have to be altered following the 1971 confer-
ence. For our purposes, the terms MKS system and SI
system are synonymous, but we shall use the presently
preferred designation SI. We will also follow current
practice in using the SI system in this book; however,
there will be some exceptions. For example, meter
sticks, vernier calipers, and micrometer calipers are
calibrated in centimeters, and recording the reading of
such Instruments in centimeters should certainly be
permissible. But conversion to meters will usually be
advisable if not essential when the data is used in cal-
culations.

One other difficulty that needs to be overcome
right from the start is the confusion between mass and
weight. It is imperative 1o remember that weight is a
force, namely. for our purposes in a laboratory on the
earth’s surface, the force with which objects are at-
tracted to the earth by graviry. Mass, on the other
hand, is an intrinsic property of all objects. Since the
force of gravity goes inversely with the square of the
distance separating the attracting objects, an object can
be made weightless by taking it far away from the earth
and all other heavenly bodies, but it never becomes
massless. Confusion arises because an object’s mass is
apparently responsible for its gravitational attraction to
other objects, and in fact the gravitational force is
proportional to the masses involved. Thus a mass m
will be attracted to the earth with a force W (its weight)
that is proportional to m. As the proportionality con-
stant is a known number (the acceleration of gravity g),
a measurement of the weight of an object also deter-
mines its mass. As a result, scales and balances, which
actually measure weight, are often calibrated in grams
or kilograms, which are units of mass. Thus it is all too
casy to say that a certain object “weighs so many
grams.” Great care must be taken not to do this but to
say rather that the object’s mass is so many grams,
even though the instrument making the measurement is
actually measuring the force of gravity on the object.
The distinction between mass and weight will be care-
fully observed throughout this book, although some-
times a seeming contradiction may appear. Thus it is
common parlance to speak of *‘a set of weights,” mean-
ing objects of calibrated mass to be used in balances to
produce known forces of gravity. We shall adopt such
usual terms rather than the somewhat forced “set of
calibrated masses,” but the distinction between mass
and weight must be kept in mind at all times, even
when confusing situations such as those just mentioned
arise.
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PLOTTING OF CURVES

Graphs are of particular importance in physics because
they display the relationship between pairs of inter-
dependent quantities in a readily visualized form. Thus
if two quantities x and y have the linear relation

y=ax+ b (1

a graph of y against x will be a straight line whose slope
is a and whose y intercept (the value of y at which the
line crosses the y axis, that is, at x = 0) is . Con-
versely, if a given theory predicts that a certain phys-
ical quantity y depends linearly on another physical
quantity x, this conclusion can be tested experi-
mentally by measuring corresponding values of x and
y and plotting these results. The plotted points will
readily show whether a straight line can be drawn
through them, even if various errors cause them to
have a “scatter” instead of all lying right on a line. If
there is a scatter, the straight line that represents the
best average should be drawn as shown in Fig. 1.
There are numerous rules for obtaining the line that is
a true “best fit” to a given set of experimental points,
but a simple determination by visual inspection using
a transparent (plastic) straight edge is usually good
enough and is all that will be required in these experi-
ments. If the scatter of points is so large that a good
decision as to where to draw a straight line through
them cannot be made, the conclusion that y depends
linearly on x should be seriously questioned. If, on the
other hand, the points readily define a straight line, not
only does the resulting graph supply evidence that x
and y are indeed linearly related, but the value of a in
Equation 1 may be obtained by finding the line’s slope.
Note that this is a convenient method of getting the
average value of a. Moreover, a value for b represent-
ing an average result of all the plotted data can be read
directly off the graph. This simple procedure is equiv-
alent to the much more tedious one of determining the
best values of a and b by a “best fit” calculation.

Figure 1 A “best fit" straight line drawn through a set of
experimental points

A linear relation between x and v is easily recog-
nized when the points are plotted. but other re-
lationships are not so obvious. Thus. suppose the re-
lationship to be investigated were

y=ax'+b (2)

Plotting y against.x would give a curve, but it would be
very difficult to distinguish this curve from the curve
resulting from, say, y = ax’ + b. In fact, the straight
line is the only graph that is really obvious. However,
if the validity of Equation 2 is to be tested graphically,
anew variable u = x? can be introduced so that Equa-
tion 2 becomes

y=au + b (3)

Then, if Equation 2 is valid, a plot of y against u (that
is, against x*) will yield a readily recognizable straight
line. This procedure may be used in many cases where
a new variable ¥ may be substituted for a function of
x to produce a linear relation such as Equation 3.

A special case of this procedure arises when y
depends exponentially on x, so that

y = Ae® (4)

where e is the base of natural logarithms and is approx-
imately equal to 2.718. This situation occurs often
enough to merit special treatment. The first step is to
take the natural logarithm of both sides of Equation 4:

Iny=InAe” =InA + Ine” =InA + ax (5)

Equation 5 is just like Equation 1 except that In y rather
than y is to be plotted against x. This plot will thus be
linear if Equation 4 is valid, and the v intercept (b in
Equation 1) will be In A. Hence A can be found by
taking the antilog of the intercept.

Because this situation arises often, special graph
paper is printed on which the graduations along the
ordinate (y axis) are logarithmically rather than lin-
early spaced. This means that if a value of y is plotted
on the given ordinate scale, the actual position of the
point along the y axis will be proportional to the loga-
rithm of y. In other words, plotting a value of y on this
special graph paper automatically takes the logarithm,
making a separate calculation of In v for each value of
y unnecessary. However, note that commercial loga-
rithmic graph paper is set up for common (base 10)
logarithms rather than natural (base e) logarithms. Ta-
king the common log of both sides of Equation 4 yields

log y = log Ae® = log A + log e
=logA + axloge
=log A + al0.4343)x (6)

The slope of the resulting straight line is now 0.4343q
rather than just a. Notice also that because the y axis is



graduated logarithmically, the value of A may be read
off from the intercept directly, the paper having also
automatically done the job of taking the antilog.

Another popular special case arises when a func-
tional relation of the form

v =qx" (7

1s to be investigated. Although this can be handled by
introducing ¥ = x" as already discussed, such a pro-
cedure requires calculating x” for each value of x.
Since n may be any number, positive or negative, such
calculations can get tedious unless a reasonably so-
phisticated calculator is available. Another very con-
venient method is again to take the logarithm of both
sides of Equation 7. Then,

logy = loga + nlog x (8)

and a plot of log y against log x will produce a straight
line with slope n.* You may object that since you must
look up the logarithms of all the values of both x and
¥, things haven’t been simplified much, but again spe-
cial graph paper is available that makes this calculation
unnecessary. Since log y is now to be plotted against
log x rather than x, this graph paper has both the ordi-
nate and the abscissa graduated logarithmically. It is
therefore called full log or log-log paper, whereas pa-
per with the ordinate graduated logarithmically and the
abscissa linearly is called semilog. The logarithmic
scales are called I-cycle, 2-cycle, etc., depending on
the number of powers of ten covered on the axis in
question. Thus, an axis graduated logarithmically
from 1 to 10 is called 1-cycle; from I to 100, 2-cycle;

SIGNIFICANT FIGURES
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etc. Scales of up to 5 cycles are available commer-
cially. and in the case of full log paper there are various
standard combinations of numbers of cycles along the
ordinate and the abscissa. Appropriate graph paper
pages are included in this book as needed; refer to
Experiment 33 for an example of semilog paper and to
Experiment 36 for the full log type.

In drawing graphs, scales for the coordinate axes
should be chosen so that the curve extends over most
of the graph sheet and so that decimal parts of units are
easily determined. This can be done if each small di-
vision is made equal to one, two, five, or ten units. The
same scale need not be used for both axes. The inde-
pendent variable should be plotted along the x axis and
the dependent variable along the v axis. Each axis
should be labeled with the name of the quantity being
plotted and the scale divisions used. The numbers
should increase from left to right and from bottom to
top. Each graph should have a title indicating what the
curve is intended to show.

Each point should be plotted as a dot surrounded
by a small circle, which shows where the point is
located even if the dot is obscured by the curve drawn
through it. A straight line (or smooth curve if a
straight-line plot is not being sought) should then be
drawn through the dots. The curve need not pass
through all the dots but should be drawn so as to fit
them as closely as possible, as already mentioned. In
general, as many points will lie on one side of the
curve as on the other. The extent to which the plotted
points coincide with the curve is a measure of the
accuracy of the results.

The numbers dealt with in mathematics are exact num-
bers. That is, when a mathematician writes 2 it means
2.00000 . . ., and all subsequent calculations assume
that the 2 means exactly two, not the tiniest fraction
more or less. In physics the situation is very different.
Many of the numbers dealt with come from mea-
surements of physical quantities, and these can never
be exact. For example, suppose that a distance is mea-
sured with an ordinary centimeter rule and found to be
5.23 cm. In this measurement, the 3 is an estimate. for
the smallest divisions on a centimeter rule are milli-
meters (tenths of a centimeter). The 3 represents a
guess as to where between the 5.2 and 5.3 ¢m divisions
the end of the measured distance lies. The statement
that the distance was found to be 5.23 c¢m does not
mean that it is exactly 5.23 cm but merely that it is
probably not less than 5.22 cm or more than 5.24 ¢m.
If a high-quality micrometer had been used, the dis-
tance might have been found to be 5.2347 cm, where

*Notice that in this case there is no intercept in the usual
sense. Logy = logaand y = a when x = 1.

the 7 represents a guess as to where the micrometer’s
index line fell between the .234 and the .235 divisions.
Thus the micrometer yields a much more precise value
of the measured length than does the centimeter rule,
but it too is not exact. More precise measurement
methods might give further decimal places that cannot
be determined with the micrometer any more than the
4 and the 7 could be found with the centimeter rule.
Thus, when the result of the centimeter rule mea-
surement has been written as 5.23 c¢m, it doesn’t mean
that the distance is exactly 5.23 cm or that zeros can be
written after the 3. Nothing can be written after the 3
because the instrument being used gives no informa-
tion as to what to write there.

The 5, the 2, and the 3 in the centimeter rule
measurement are called significant figures because
they each give trustworthy information about the size
of the physical quantity being measured. The centi-
meter rule is quite good enough as a length-measuring
instrument to determine that the length in question lies
between 5.2 and 5.3 cm, and the 3 in the next place
represents a significant guess as to where between 5.2
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and 5.3 cm the actual length lies. The centimeter rule
measurement is thus good to three significant figures.,
whereas the micrometer measurement gave five
significant figures, the micrometer being a much more
precise length-measuring instrument than the centi-
meter rule. The 3 in the centimeter rule measurement
and the 7 in the micrometer measurement are less
significant than the other figures but are still consid-
ered significant because they give some real informa-
tion about the desired length even though there is some
doubt about their actual values. Clearly, however, if
there is some doubt about then, any figures that might
get written ta the right of them in the respective cases
would be meaningless. In particular, one should be
careful not to write zeros there. If the length mea-
surement made with the centimeter rule were recorded
as 5.230 cm, the zero would be a significant figure and
would mean that somehow someone was able to inter-
polate between the 5.2 and 5.3 divisions to 1/100
rather than just 1/10 of the space between them. In-
deed, the micrometer measurement shows that the
figure to the right of the 3 should be 4, so that putting
a zero there says something that isn't true. Always take
care to distinguish between zeros that are significant
and those that are not. In general, zeros that merely
serve to place the decimal point are not significant.
Thus, if the length measurement were to be stated in
meters, the two zeros in 0.0523 m would not be
significant. They merely place the decimal point ap-
propriately in the three-significant-figure measure-
ment. However, if in measuring the distance with the
centimeter rule the end of this distance appeared to fall
right opposite the .2 cm division tollowing the 5 ¢m
mark, it would be recorded as 5.20 ¢m and the zero
would be significant. In general, zeros appearing to the
right of figures that are already to the right of the
decimal point must be regarded as significant, for if
they weren’t they wouldn’t be there. Zeros between
other figures and the decimal point should usually be
regarded as serving only to place the decimal point.
The example of the length of 0.0523 m is typical, there
being no doubt that the zeros are not significant. There
are some ambiguous cases, however. Suppose that a
certain race course is found to be 1.2 km long. As
written, this is a two-significant-figure measurement.
The same result may be given as 1200 m. Here again
the zeros are not significant but must be present in
order to properly Jocate the decimal point. Without the
knowledge that the original measurement of 1.2 km
contained only two significant figures, however, there
is no way to tell whether these zeros are significant or
not. In such cases, the experimenter must refer to the
measuring instrument to determine how many sig-
nificant figures are justified.

There is usually no problem in deciding how many
significant figures a given measurement should con-
tain, but difficulties arise when these numbers are used

in calculations. This is because mathematics assumes
that all numbers are exact and thus automatically fills
all places to the right of the last significant figure with
zeros even though this is physically wrong. The calcu-
lations then often produce a great many figures that
look as if they were significant but really are not, for
clearly no mathematical manipulation can give a result
whose precision is greater than that of the hjuantities
put into it. Some examples may serve to show how this
problem should be handled.

I. Addition and subtraction: When carrying out
addition or subtraction by hand, do not carry the result
beyond the first column that contains a doubtful fidure .
This means that all figures lying to the right of the last
column in which all figures are signiticant should be
dropped. Thus in obtaining the sum of these numbers

806.5 806.5
32.03 they should be written as 320
0.0652 0.1
125.0 125.0
963.6

Note that. in dropping nonsignificant figures, the last
figure retained should be unchanged it the first figure
dropped is less than 5 and should be increased by 1 if
the first figure dropped is 5 or greater. This is a normal
convention to which this book will adhere.

If an electronic calculator is used, the numbers to
be added may be entered without the bother of deter-
mining which figures to drop, in which case all figures
will appear in the sum. This is like adding the numbers
as given on the left in the example above. The result
will be 963.5952. You must then look at the data and
observe that in two of the numbers being added there
is no indication of what the figure in the second deci-
mal place should be. The result must therefore be roun-
ded off to one decimal place by dropping the 952.
Since the 9 is equal to or greater than 5, the figure in
the first decimal place is raised by one to give 963.6 as
before.

2. Multiplication and division: The operations of
multiplication and division usually produce many
more figures than can be justified as significant, so that
results must be properly rounded off. The rule is to
retain in the result only as many figures as the number
of significant figures in the least precise quantity in the
data. Suppose the area of a plate is to be measured. A
centimeter rule is used to find that the plate has a length
of 7.62 cm and a width of 3.81 cm. As in the earlier
example with the centimeter rule, these measurements
each contain three significant figures, of which the
third is doubtful. If the area is now found by multi-
plying 3.81 X 7.62 either by hand or with a calcu-
lator, 29.0322 c¢m’ will be obtained. This number ap-
pears to have six significant figures. but the two
original quantities have only three each. Therefore,
only three significant figures should be retained in the



result, which should be written as 29.0 ¢m?. With
some exceptions, the measurements to be made in the
experimental work covered in this book will contain
three or four significant figures. so that when an elec-
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tronic calculator is used. the final result must be roun-
ded off to the number of figures that can be justified by
the data as being significant.

THEORY OF ERRORS

All measurements are affected by errors; this means
that measurements are always subject to some uncer-
tainty. There are many different types of errors. such
as personal, systematic, instrumental, and accidental
errors. Personal errors include blunders, such as mis-
takes in arithmetic, in recording an observation. or in
reading scale divisions. Another important kind of per-
sonal error is known as personal bias, such as trying to
fit the measurements to some preconceived idea, or
being prejudiced in favor of the first observation. Sys-
tematic errors are characterized by their tendency to be
in one direction only, either positive or negative For
example, if a meter stick is slightly worn at one end.
and measurements are taken from this end, then a con-
stant error will occur in all these measurements. Instru-
mental errors are those introduced by slight imper-
fections in the manufacture or calibration of the
instrument. The worn meter stick just mentioned or an
electrical meter that has not been properly set to zero
with no input are examples of instrumental errors.
Note that such errors are usually also systematic. Acci-
dental errors are deviations beyond the control of the
observer. These errors are due to jarring, noise,
fluctuations in temperature, variations in atmospheric
pressure, and the like. Included in this category are
variations in observed data due to inherently random
processes such as the intersurface actions that produce
the force we call friction and the radioactive decay of
atomic nuclei. Since the causes just listed for acci-
dental errors are essentially random in nature, all these
causes of data variation are subject to treatment by
statistical methods, as will be discussed here.

It will be assumed in these experiments that instru-
mental errors due to improper calibration, zerving,
etc., have been prevented by proper inspection and
adjustment of the equipment and that care has been
taken to eliminate systematic errors, personal errors,
and personal bias. There remain accidental errors,
which make themselves known by causing a spread in
the values obtained when a given measurement is re-
peated several times. Two examples may serve to il-
lustrate how this comes about.

Consider first the distance measurement with the
centimeter rule discussed in connection with signifi-
cant figures. In the measurement of 5.23 cm, the 3 was
doubtful, being an interpolation between the 5.2 and
5.3 cm divisions, which are the smallest divisions on
the centimeter rule. If a two-significant-figure result
were adequate, the distance could have been quoted as
5.2 em. In this case, if the measurement were repeated

many times, even by different experimenters, the like-
lihood is that 5.2 ¢cm would be obtained each time. No
accidental error is revealed because the measuring in-
strument is not being pushed to the limit of its precision
and random processes in the experiment (such as small
variations in the length of the rule and/or the distance
being measured due to temperature fluctuations) are
negligible compared to the smallest scale unit in the
measuring instrument (the millimeter divisions on the
centimeter rule in this case). The precision here is said
to be limited by the scale of the instrument.

However. if the distance measurement is repeated
with an estimated interpolation made each time be-
tween the 5.2 and 5.3 cm divisions, the same estimate
may not always be made. This would be especially true
if each measurement were made by a different experi-
menter who had no knowledge of the others’ results.
Thus, one might guess 5.22 ¢cm. another 5.21, another
5.24, etc. To handle this situation. a mean or average
of the various measured values is calculated. As will
be discussed shortly, this average is more accurate
than any one of the measurements alone and can in fact
be shown to improve in accuracy as the square root of
the number of individual measurements made.
Clearly. a way of improving the accuracy of experi-
mental data is to measure each quantity many times,
and an important matter of judgment in experimental
work is to decide on how many times a given quantity
is t0 be measured. In this regard. it must be remem-
bered that to measure something N times takes N times
as long as measuring it once, but the accuracy obtained
by doing so is only VN times as great. Thus, if a
certain measurement takes one minute, making it ten
times will take only ten minutes but will yield over
three times the accuracy. However, making it a hun-
dred times will take an hour and forty minutes, but this
investment in time will only vyield another threefold
increase in accuracy. Clearly. a compromise based on
the accuracy required, the time needed for a particular
measurement, and the time available must be reached
in each case.

A second example, one dominated by random pro-
cesses inherent in the experiment itself, is that of the
range of a spring-operated gun. The experimental
setup is shown in Figure 2. The spring gun consists of
a tube containing a spring-loaded plunger. A small
steel ball is placed in the tube against the plunger. The
plunger is pulled back a given distance, compressing
the spring by a known amount. and is then released
sharply, propelling the ball out of the tube. The ball
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Figure 2 The range of a spring gun

strikes the floor at a horizontal distance x from the end
of the tube (the gun’s muzzle), this distance being the
range in guestion.

If this experiment is repeated under conditions
made as identical as possible to those in effect on the
first try (the ball is carefully put back in the tube, the
plunger is pulled back by a distance made as closely
equal as possible to that used the first time, and care is
taken to release the plunger in the same way), will the
ball strike the floor at exactly the same point? Simple
theory predicts that it will, but smal! variations in the
distance the plunger was pulled back, in the state of the
spring, and in the condition of the surtaces of the ball
and the inside of the tube—all random, uncontrollable
effects—will cause the measured range to vary some-
what on subsequent shots. Indeed, no one would really
expect successive shots from a gun to all land in pre-
cisely the same spot even though the gun was clamped

—EEr

in a fixed position and given the same charge each
time. Instead, a spread of impact points would be ex-
pected, as shown in the plan view of the spring-gun
experiment in Fig. 3. The extent of the spread may be
reduced by using great care in the experimental tech-
nique (wiping off the ball after each shot, handling it
with plastic gloves to prevent getting fingerprints on it,
taking care in the measurement of how far the plunger
is retracted, and releasing the plunger smartly each
time), but the spread can never be reduced to zero. The
size of the spread is a measure of the precision of the
experiment. An estimate of this precision is very de-
sirable in all experimental work, and the following
discussion will show how the extent of the spread can
be used to express such an estimate quantitatively.
According to statistical theory, the arithmetic
mean or average of a number of observations will give
the most probable result. This is clear from the results

e o) oo
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Figure 3 The range of a spring gun. Plan view



of the range experiment illustrated in Fig. 3. If a single
number is to be quoted as the range of the spring gun,
it should be the distance from the gun muzzle to the
center of the distribution of impact points. In the ab-
sence of any peculiar experimental effects, we expect
the distribution of points to be densest near the center,
to thin out as we go away from the center, and to be
symmetrical (to show as many impact points beyond
the center as short of it). Hence in this normal case the
average range X is also the median (the midpoint of the
distribution with as many points with bigger x as with
smaller x) and the most probable value (the point near
which there is the greatest density of points). Thus the
first step in data analysis is to find the average of the
distances from the gun muzzle to all the individual
impact points. This is shown on the left in Table I.
Note that these measurements are made with a meter
stick and could therefore be given to one more
significant figure by interpolation between the milli-
meter divisions on the stick. If this order of precision
were wanted, each value of x would be measured
several times by different investigators, each of whom
would make an interpolation, and an average value
obtained for each x. Then every entry in the left-hand
column of Table I could be quoted to two decimal
places (five significant figures). However, this would
take a great deal of time and effort, all of which would
be wasted because the spread in the data is several
centimeters, making the fifth significant figure in each
measurement nonsignificant in the final result. In other
words, the random effects in the experiment dominate
the picture and limit the useable precision of the mea-
suring instrument.

One obvious way of expressing the extent of the
spread in a set of experimental data is to note the
deviation of each measurement from the average or
arithmetic mean just found. In the example of the
spring-gun range experiment, these deviations (differ-

Table I The Range of a Spring Gun

Range, cm Deviations, cm Deviations Squared, em’
134.2 +0.3 0.09
139.5 +5.6 31.36
133.0 -0.9 0.81
136.6 +2.7 7.29
129.4 —-4.5 20.25
127.8 —6.1] 37.2]
130.6 —-33 10.89
136.5 +2.6 6.76
135.3 +1.4 1.96
131.9 -2.0 4.00
138.1 +4.2 17.64

11[1472.9 11[33.6 11[138.26

x=1339cm ad. = 3.1 cm 12.57

o=VI257=35cm
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ences between each measurement and the average) are
tabulated in the middle column of Table I and their
average is then computed. Note that, in computing this
average, no account is taken of the algebraic signs of
the deviations. A deviation represents an error—a dif-
ference between a particular measurement and the av-
erage of all the measurements, this average being the
closest available approximation to the true value of the
quantity being measured. Which way the deviation lies
makes no difference; it is still an error. The average
error is a measure of the scatter of the observed values
about their average. The average deviation thus found
is therefore often called the average error, and for the
purposes of the elementary laboratory, it may be taken
as the possible error in the mean value. Consequently
the result of the range measurement should be written
as 133.9 = 3.1 cm to show that the true value of the
range has a high probability of lying between 130.8 cm
(133.9 — 3.1 cm) and 137.0 cm (i33.9 + 3.1 cm).
Actually, a statistical analysis shows that if a very
large number of range measurements were made,
57.5% of them would lie inside this interval. That is,
57.5% of the impact points would be between 130.8
and 137.0 cm from the gun muzzie.

Statistical theory also presents some other useful
ways of stating the accuracy of an experimental result.
For example, the fact that the average of a set of
measurements gets more and more accurate in propor-
tion to the square root of the number of measurements
made can be reflected in the stated error by dividing
the average error by V/N, where N is the number of
measurements. The result is called the average devi-
ation of the mean (A.D.). Thus,

a.d.

AD. = 7 )
where a.d. stands for the average deviation from the
mean, that is, the average error already discussed. The
A.D. is a measure of the deviation of the arithmetical
mean from the true value and is in this context gener-
ally known as the probable error. The significance of
the A.D., from probability theory. is that the chances
are 50% that the true value of the quantity being ob-
served will lie within =A_D. of the mean. Thus, in the
example of the spring gun, the mean of the measured
ranges is 133.9 cm and the average deviation from the
mean (the a.d.) is 3.1 ¢m, which says that on the
average the readings differ from the mean (133.9 c¢m)
by 3.1 cm. The average deviation of the mean (the
AD) is 3./VI1 = 0.9 cm, which says that the
chances that the true value of the range will lie in the
interval 133.9 + 0.9 cm are 50%, while the chances
that it will lie outside this interval are also 50%.

Another (and, from the standpoint of statistical
theory, most important) measure of the dispersion
(scatter of experimental points) is the standard devi-
ation. This is defined as the square root of the average
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of the squares of the individual deviations. or, mathe-
matically, by

\/(xl — X+ (- xX)P+ e+ (ay — X)
ag = L

(i

where o is the standard deviation, x,. x>, . . . . x, are
the N individual measurements, and ¥ is their average.
Note that the signs of the various deviations make no
difference in calculating o since each is squared. An
example of a standard deviation is given in the right-
hand column in Table 1. Like other measures of dis-
persion, the standard deviation gives information
about how closely the distribution is grouped about the
mean. Statistical analysis shows that for a large num-

ber of normally distributed measurements, 68.3% of

them will fall within the interval x = o. In the results
of our hypothetical range experiment, this is
133.9 £ 3.5 cm, and after a large number of firings
we would expect to find that about 68% of the impact
points lay between 130.4 and 137.4 ¢m from the gun
muzzle,

When a very large number of measurements of a
given quantity are made and variations between the
different values obtained are due to truly random et-
fects, a normal distribution of these values will be
found. The word distribution as used here means an
expression of the relative frequency with which the
different observed values occur. Such an expression
often takes the form of a graph in which the number of
observed values in a small interval centered on a par-
ticular value of x is plotted against x. Thus, suppose in
the experiment with the spring gun a very large num-
ber of range observations were made. We could, for
example, count the number of such observations fall-
ing in the interval 127.0 % 0.5 cm and plot this num-
ber as the ordinate of a point whose abscissa was 127
cm. Another point would be the number of obser-
vations falling between 127.5 and 128.5 cm plotted
with an abscissa of 128 cm, and this process could be
continued until we found somewhere beyond 140 ¢m
that there were no more observed points to plot. A
smooth curve could then be drawn through the plotted
points. According to our earlier discussion, this curve
should show a maximum at the mean value ¥ = 1339
cm and should fall off symmetrically on either side.
Such a curve, called the normal curve, was first dis-
covered by a famous French mathematician, De
Moivre, while working on certain problems in games
of chance. It was also derived independently by La-
place and Gauss, who made statistical use of it and
found that it accurately represents the errors of obser-
vation in scientific measurements. The curve is also
known as the normal probability curve because of its
use in the theory of probability, as the normal curve of
error, and as the Gaussian curve. Here error is used to

mean a deviation from the true value. Whenever any
measurements are made in which there are random
fluctuations, the results predicted by the normal curve
are found to be valid. Thus it has been found that this
curve describes very well many distributions that arise
in the fields of the physical sciences. biology, edu-
cation. and the social sciences.

The mathematical representation of the normal
curve is given by the equation

N

y o= - ()'(\ 0 2 (]l)
AA

where v represents the distribution tunction. In accord-
ance with the foregoing discussion of how the normal
curve i obtained in a physical case. the number yAx
1$ the number of measurements of v (out of a very large
total number N) that fall within the very small interval
Ax centered on the value of x for which v was com-
puted. Thus suppose we want to know how many
measurements of x will fall in the vicinity of a certain
value x,. Putting v, into Equation 1 for v, we calculate
the corresponding value v, for v. Then y,Ax is the
number of measurements of x expected to be found in
the interval x, — 1Ax to xo + $Ax. Thus v, is to be
interpreted as the number of measurements per unit
interval in x falling in the neighborhood of x,. Note
that vyAx is the area of a tall, thin rectangle Ax wide
located at x, on the x axis of the coordinate system in
which the normal curve is plotted and extending up to
the curve (a height v,). Because this area represents the
number of measurements of x falling within Ax, the
area under the complete curve should be equal to N,
the total number of measurements made. The tfactor
I/oV2m in Equation 11, called a normalizing factor,
is chosen to bring this about. It follows that the area
under the curve between ordinates erected at some pair
of values x = a and x = b is the number of mea-
surements falling between a and b.

The curve is bell-shaped and symmetrical about
the line v = X. 1t has a maximum for this value of v
(bearing out the idea that the mean value of x is also
the most probable value) and falls quite rapidly toward
the x axis on both sides. For different normat distribu-
tions, the curve has the same general shape. but its
steepness. height. and location along the v axis will
depend on the values of N. X, and 0. The characteristic
properties of the normal curve can be studied very
readily by representing it in a new set of variables by
means of a mathematical transformation. The first step
is to divide Equation 11 through by N. The quantity
(¥/N)Ax is then the fraction of the total number of
measurements or the probability of obtaining a mea-
surement in the narrow interval Ax centered on the
value of x for which y is computed. Put another way,
¥/N is the probability per unit interval in x of getting
a value of x lying in that interval whenever a mea-
surement of x is made. Clearly, the area under the



curve of y/N is unity, corresponding to the fact that the
probability of getting some value of x is 1 or 100%.
Next, we take the origin of our transformed coordinate
system to be at the arithmetic mean and use the stan-
dard deviation as the unit of measurement along our
new horizontal axis. This is done by choosing a new
variable ¢ related to x by the equationt = (x — ¥)/0.
When this is substituted into Equation 11 with N di-
vided out and the normalizing factor appropriately
modified, we obtain in place of v(x) a new function
&(1) given by

d(t) = —==¢ 2 (12}

This is the standard form of the normal curve. where
&(1) is the distribution and t is the variable. For this
distribution, the average value of t is zero and the
standard deviation is equal to one. The advantage of
representing the normal curve in the standard form is
that the area under the curve between any two values
of t may be calculated once and for all. These values
are tabulated and can be obtained from tables of proba-
bility integrals. Any normal distribution may then be
expressed in the standard form and the required calcu-
lations of the characteristics of the distribution can
easily be made.

Some interesting properties of this curve, which is
shown in Fig. 4, deserve mention. Note that the-
oretically it extends from —= to +2, but practically it
1$ so close to the axis beyond 1 = =3 that the area
under the curve beyond these points is negligible. The
variable ¢ is measured in units of & along the horizontal
axis, and the mean, the median, and the most probable
value all coincide at the origin (r = 0). The total area
under the curve is equal to 1. Hence the area under any
portion of the curve represents the relative frequency
(expressed as a fraction of unity or as a percent) with
which measurements in that interval occur. Numerical
values of such areas may be obtained from tables and
can be changed into the actual frequencies of occur-
rence by multiplying by N.

The percentage distribution of area under the nor-
mal curve is given in Fig. 4, where o is the unit of
measurement. The significance of the values given in
the figure is that if the values of x are normally distrib-
uted, the probability that a value chosen at random will
fall within the range ¥ = ¢ is 0.683. The probability
that it will lie within the range ¥ + 20 is 0.9545. The
probability that it will lie within the range x * 3o is
0.9973. Thus the probability that it will lie outside of
this range is only 0.0027 or 0.27%. Hence a deviation

PERCENT ERROR

The error in a measured quantity is often conveniently
expressed as a percent of the quantity itself. Since the
true value is usually not known, one of the errors
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Figure 4 The percentage distribution of area under the
normal curve
of 3¢ on both sides of the arithmetic mean includes
practically the whole of a normal distribution. The
probability that any particular value of x will lie in the
range ¥ = a.d. is also easily found tfrom Equation 12
and Fig. 4. The average deviation from the mean
(a.d.) is simply the average 7 of 7 expressed in units of
o and can be calculated from Equation 12. The result

- 2
ad = or= O’\/‘ = 0.798¢ (13)

The area under the curve of Fig. 4 between —0.798
and +0.798 is then found to be 0.575 or 57.5% of the
total area. This means that, as noted earlier. 57.5% of
a large number of measurements will fall within the
interval ¥ = a.d. Similarly, the area under the curve
between ~1 and +1 is found to be 0.683 of the total
area so that, also as noted earlier, 68.3% of a large
number of measurements will fall within the interval
X * oo

previously discussed must be used in calculating this
percent. For this purpose, the probable error is usually
chosen because it is the same as the A.D. and therefore



xviii INTRODUCTION

the easiest to calculate from the tabulated data. This
percent error, also called the percent deviation of the
mean, or the percent A.D., is equal to the A.D. di-
vided by the arithmetic mean of the measured values
and multiplied by 100 to give the result in terms of a
percent as desired. That is

% A.D. = %—' X 100%

where M is the arithmetic mean. This is the quantity
usually considered in judging the accuracy of a series
of measurements. In the example of the range of the
spring gun, the percent A.D. is

133.9

X 100% = 0.67%

If the true or accepted value of a quantity is
known, the actual error can be calculated as the differ-
ence between the result obtained from the experiment
(the mean value M of the measurements) and the true
value M,. The relative error is then the ratio of the error

CALCULATING WITH ERRORS

to the true value, and the percent error is this ratio
times 100%. Thus.

I

% error = = X 100%

For example. suppose the velocity of sound in dry
air at 0°C is measured and found to be 333.1 mys,
while the accepted value is 331.4 m/s. The erroris 1.7
m/s. The relative error is 1.7/331.4 or 0.005. The
percent error is

1.7 L o
4 X 100% = 0.5%

There is no definite value for the allowable percent
error to be expected in the following experiments. In
many cases it is reasonable to expect results within
1%, while in others the error may be 5% or more,
depending on the apparatus used. However, all mea-
surements should be made with the greatest care, so as
to reduce the error as much as possible.

Whenever an experimental result is used in a calcu-
lation, account must be taken of the fact that an error
is associated with it. Suppose we have two results x,
and x; with respective standard deviations ¢, and o
We quote these results as x, = o, and x; = ¢ on the
basis that the 68% chance that the true values lie within
these ranges is good enough.* If the theory of the
experiment requires these two quantities to be added,
the sumisx; + x, £ oy = 5. It would, of course. be
very nice if the error in one measurement was in the
opposite direction from and therefore cancelled the
error in the other, but this happy event can hardly be
assured. It is much safer to assume the worst, that is.
that the errors are in the same direction so that the sum
becomes x; + x, = (g, + o1). We conclude that to
be on the safe side we should add the errors in the
individual quantities to obtain the error in the sum.
Statistics show, however, that this approach is unduly
pessimistic and that, in fact, when standard deviations
are being used, the standard deviation o, in the sum is
the square root of the sum of the squares of the individ-
ual standard deviations. Thus,

aoa, = V (flz + 0-22

The procedure is identical in the case of a sub-
traction, but care should be taken to note that the
percent error can increase tremendously when two

* For the experiments covered in this manual, the a.d. . which
is easier to find than ¢, will usually be good enough.

quantities of about the same value are to be subtracted
one from the other. In such a case, we get
x =% * Vo + oo, and if v, and x, are nearly
equal, their difference may be smaller than the error.
This means that the errors associated with x, and x, are
large enough so that we cannot tell whether the quan-
tities are equal or slightly unequal and hence whether
or not a difference actually exists. Consider, for exam-
ple, two automobiles driving down the highway with
one slowly passing the other. The problem is to mea-
sure the passing speed, that is, the difference between
the speeds of the individual automobiles. The best way
to do this (since we are not interested in the individual
speeds) is 10 measure the relative speed directly, but
suppose experimental difficulties made this impossible
so that the only data obtainable were the speedometer
readings in each car. We find that one reads 61 miles
per hour and the other 62 miles per hour. Can we
conclude that one car is passing the other at the rate of
I mph? Not really. for automobile speedometers are
good to only two significant figures with the last one
in doubt. There is therefore an error of about 1 mph in
each speedometer. so that their readings should be
reported as 61 = 1 and 62 * | mph respectively.
This being the case, the difference must be given as
I+V1'+ I’=12%14 mph. From this result
alone we cannot tell whether the cars are proceeding
side by side or even, if they are not, which is passing
the other. Certainly there seems to be a bias in favor
of one car’s doing the passing, but a reasonably certain
conclusion simply cannot be drawn on the basis of the



