- -

ROOTS

ASSEMBLY LANGUAGE PROGRAMMING

FOR APPLE’ lle AND APPLE' lic_

Apple” Roots:

Assembly Language
Programming
For the Apple’ lle & lic

Marl; Mdfewq

Osborne MeGraw-Hill
Berkeley, California

Published by

Osborne MeGraw-Hill
2600 Tenth Street
Berkeley, California 94710
US.A.

For information on translations and book distributors
outside of the U.S.A., please write to Osborne MeGraw-Hill
at the above address.

Apple is a registered trademark of Apple Computer, Inc.
A complete list of trademarks appears on page 345.

Apple® Roots:
Assembly Language Programming
For the Apple® lle & lic

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1975, no part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DODO 898765
ISBN 0-07-881130-9

Jonathan Erickson, Acquisitions Editor
Paul Jensen, Technical Editor

Michael Fischer, Technical Reviewer
Jessica Bernard, Copy Editor

Judy Wohlfrom, Text Design

Yashi Okita, Cover Design

Introduction

If your Apple doesn’t understand you, maybe it’s because you don’t
speak its language. Now we’re going to break that language barrier.

This book will teach you how to write programs in assembly
language —the fastest-running and most memory-efficient of all pro-
gramming languages. It will give you a working knowledge of machine
language, your computer’s native tongue. It will enable you to create
programs that would be impossible to write in BASIC or other less
advanced languages. It also will prove to you that programming in
assembly language is not nearly as difficult as you may think.

Many books have been written about assembly language, but this is
the first assembly-language book to deal specifically with the Apple 1lc
and the Apple Ile, the two newest computers in the Apple II line. It is
also the first book that explains how to write assembly-language pro-
grams using ProDOS, the Apple IIc/Apple Ile disk operating system
that has now replaced its predecessor, DOS 3.3. The book also covers the
advanced features of the 65C02 microprocessor, the new chip built into
the Apple Ilc that can also be installed in the Apple Ile.

In addition, this is the first assembly-language book that explains
how to use three of the most popular assemblers for the Apple 1lc and
the Apple Ile: the ProDOS Assembler Tools package from Apple, the
Merlin Pro assembler-editor system from Roger Wagner Publishing,
Inc., and the ORCA/M assembler from The Byte Works of Albu-
querque, New Mexico.

X Apple Roots

The Apple IIc and the Apple Ile offer a number of brand-new fea-
tures that are of great importance to Apple programmers and potential
Apple programmers. These features include an 80-column text display,
double high-resolution graphics, and 64K of extra memory (all built into
the Apple IIc and optional on the Apple Ile). Both the IIc and the Ile
have expanded keyboards, including new function keys (OPEN APPLE
and CLOSED APPLE keys) and new special-character keys. In addition,
the Apple Ilc has a built-in set of special characters designed for use
with a mouse, and the same special characters are available on any
Apple Ile equipped with plug-in mouse cards.

Both the Apple Ilc and Ile are now being shipped with ProDOS, the
new Apple II disk operating system that succeeds DOS 3.8. ProDOS is
not just another revision of DOS 3.3; it is a completely new disk operat-
ing system that was designed specifically for the Apple Ilc, the Apple
ITe, and future computers in the Apple II line. ProDOS handles disk
files and disk drives very differently from the way they were handled
under DOS 3.3.

A point-by-point comparison between DOS 3.3 and ProDOS is
beyond the scope of this introduction. However, please note that there
are so many differences between ProDOS and the systems it replaces that
most assembly-language programs written under earlier disk operating
systems will not work in a ProDOS environment. This is the first book
about writing assembly-language programs for the new ProDOS-
equipped Apple Ilc and Apple Ile computers.

Both the Apple IIe and the newest versions of the Apple Ile are now
equipped with an advanced 8-bit microprocessor called the 65C02. The
65C02, a new member of the 6502 series of microprocessors, is designed
to be programmed in standard 6502 assembly language. However, the
65C02 contains a number of new features. Along with the 56 instruc-
tions used in conventional 6502 assembly language, the 65C02 is
equipped with several additional instructions. It also recognizes a
number of addressing modes that were not available in earlier 6502-
series microprocessors.

If you know BASIC —even a little BASIC —you can learn to pro-
gram in assembly language. Once you know assembly language, you'll
be able to

¢ Write programs that will run 10 to 1000 times faster than pro-
grams written in BASIC.

» Use up to 16 colors simultaneously in any Apple Ilc or Apple Ile
graphics mode —including double high-resolution graphics.

Introduction Xi

o Custom design your own screen displays, mixing text and graph-
ies in any way you like.

» Create your own customized character sets.

Knowing assembly language can also enable you to create music and
sound effects for Apple Ile/Apple Ile programs, write programs that
will boot from a disk and run automatically when you turn your com-
puter on, and intermix BASIC and assembly language in the same pro-
gram, combining the simplicity of BASIC with the speed and versatility
of assembly language.

In other words, once you learn how to program in assembly lan-
guage, you will be able to start writing programs using the same tech-
niques that professional programmers use. Many of those techniques
are impossible without a knowledge of assembly language.

Finally, as you learn assembly language, you will be learning what
makes computers tick. That will make you a better programmer in any
language.

While teaching you assembly language, Apple Roots will provide you
with a comprehensive collection of assembly-language routines that can
be typed and assembled and then used in user-written assembly-
language programs. It also contains a library of interactive tutorial
programs that are especially designed to take the drudgery out of learn-
ing assembly language.

Chapter 1 is an easy-to-understand introduction to assembly lan-
guage. The main feature of Chapter 2 is a clear explanation of binary
numbers. In addition, Chapter 2 contains a series of four type-and-run
BASIC programs that can convert numbers from one base to another.

In Chapter 3 you will learn about the 6502B/65C02 chip used in the
Apple Ilc and the Apple Ile. In Chapter 4, you'll start actually writing
assembly-language programs. The rest of the book presents a number of
advanced programming lessons and type-and-run assembly-language
programes.

The first thing you need in order to use this book is an Apple Ilc or
Apple Ile computer equipped with a TV set or a computer monitor
(preferably a color model) and at least one disk drive. A line printer is
highly recommended but not essential. A game controller, a mouse, or
both will also come in handy. So will a second disk drive.

The assembly-language programs in this book were written using
three assemblers: the Apple ProDOS assembler, the Merlin Pro, and
the ORCA/M. If you don’t own one of those packages, it would be a good
idea to buy one before starting this book. All of the programs in the

xii Apple Roots

book were also written under ProDOS. If your Apple Ile was purchased
before ProDOS was introduced, you will need to buy a ProDOS package
from your Apple dealer and learn to use it.

One prerequisite for using the assembly-language lessons in this
book is a basic understanding of ProDOS, which you can gain by read-
ing a ProDOS manual. You should also have at least a fundamental
knowledge of Applesoft BASIC or some other high-level programming
language.

There are at least two other books that you should have before you
start studying assembly language. The first of these books is the user’s
manual that came with your computer. The second is a reference man-
ual for your computer. (Apple publishes separate reference manuals for
the Apple IIc and the Apple Ie.) Other useful books include Program-
ming the 6502 by Rodnay Zaks, Assembly Lines: The Book by Roger
Wagner, and 6502 Assembly Language Programming by Lance A. Lev-
enthal. These books, and others that may come in handy while you're
studying assembly language, are listed in the Bibliography.

Contents

A W N =

0w 00 N O O

10
1
12

Introduction

Breaking the Assembly Language Barrier
Number Systems

In the Chips

Writing and Assembling an Assembly-
Language Program

Running an Assembly-Language Program
The 6502B/65C02 Instruction Set
Addressing Your Apple

Looping and Branching

Single-Bit Manipulations of Binary Numbers
Assembly-Language Math

Memory Magic

Fundamentals of Apple Ile/Ile Graphics

ix

19
33

53

85
105
135
157
179
193
211
233

13

14

I 6 Mmoo o

Game Paddles, Joysticks, and the Apple
Mouse

Apple Graphics

Assembly-Language to Machine-Language
Conversion Chart

Machine-Language to Assembly-Language
Conversion Chart

The 65C02 Instruction Set

65C02 Op Code Table

65C02 Addressing Modes

The 65802/65816 Instruction Set

65816 Addressing Modes

65816 Op Code Table

The ASCII Character Set for the Apple II
Bibliography

Index

2417
269

309

317
323
325
327
329
331
333
335
343
347

Breaking the
Assembly Language
Barrier

If you want to learn assembly language, you've opened the right book.
With this volume and an Apple Ilc or Apple Ile computer, you can start
programming right now in machine language. Then we'll see how
machine language relates to assembly language. Turn on your comput-
er and type HL.TEST.BAS, the BASIC program listed in Program 1-1.
Then run the program, and you’ll immediately see how it got its name.

Program 1-1

HI.TEST.BAS

The HL.TEST Program (BASIC Version)

10 REM *kkx HI.TEST.BAS *x%

20 DATA 169,200,32,237,253,169,201,32,237,253,96

30 FOR L = 32768 TO 32778: READ X: POKE L,X: NEXT L
40 CALL 32768

2 Apple Roots

Machine Language and Assembly Language

As you can see, Program 1-1 is written in BASIC. However, when you
type the program and execute it, your computer will run a machine-
language program.

Please note that this is machine language, not assembly language. As
you’ll see later in this chapter, machine language and assembly lan-
guage are very closely related, but they are not exactly the same.
Machine language is made up of numbers —nothing but numbers. Since
“number-crunching” is what computers do best, machine language is
ideal for a computer. In fact, machine language is the only language
that a computer actually understands. No matter what language a pro-
gram is originally written in, it must be converted into machine lan-
guage before a computer can process it.

The main reason that assembly language is different from machine
language is that it was designed for humans, not for machines. From
the standpoint of both structure and vocabulary, assembly language is
very similar to machine language. In fact, assembly language is not
actually a programming language at all, but merely a notation system
designed to make it easier to write programs in machine language.

Despite its structural similarity to machine language, however, a
program written in assembly language looks quite different from a
program written in machine language. Whereas machine language
consists solely of numbers, assembly language uses three-letter abbrevi-
ations called mnemonics. It's therefore easier to write programs in
assembly language than in machine language.

In one respect, though, assembly language is just like any other pro-
gramming language: before an assembly-language program can be
executed by a computer, it must be converted into machine language.
For this reason, programs written in assembly language are often
called source-code programs. And machine-language programs gener-
ated from source-code programs are often referred to as object-code
programs.

Source-code programs are usually written with the aid of a special
kind of software package called an assembler-editor, or simply an
assembler. An assembler-editor package usually includes at least two
kinds of utility programs: an assembly-language editor, which enables
the user to write programs in assembly language, and an assembler,
which can convert (or assemble) assembly-language programs into
machine language.

Breaking the Assembly Language Barrier 3

Assembly language and machine language will be discussed in more
detail later in this chapter.

How the HL.TEST.BAS Program Works

Now we're ready to take a closer look at the HIL.TEST.BAS program
shown in Program 1-1. The HIL.TEST.BAS program begins with a title
line. The next line in the program, line 20, is a line of data that equates
to a series of machine-language instructions. Line 30 contains a loop
that pokes the machine-language data in line 20 into a block of RAM
(which we will define shortly) that extends from memory address 32768
to memory address 32778, or $8000 to $800A in hexadecimal notation.
(A memory address —sometimes referred to as a memory location or
memory register —is nothing but a number that can be used to pinpoint
the location of any piece of data, or byte, stored in a computer’s memory.
There are 65,535 memory addresses in an off-the-rack Apple Ile, and
there are 131,070 memory addresses in an Apple Ilc or an Apple Ile
equipped with an expanded 80-column card. More information on
memory addresses will be provided later in this book, primarily in
Chapter 11, which will focus specifically on the memory structure of the
Apple Ilc and the Apple Ile.) Finally, in line 40, there’s a CALL instrue-
tion that executes the machine-language program that has just been
loaded into memory.

To understand what your computer does when it receives the CALL
instruction in line 40, it will help to have a basic understanding of the
architecture of microcomputers and how your Apple processes a
machine-language program.

Inside a Microcomputer

Every microcomputer can be divided into three parts:

o A central processing unit (CPU). A central processing unit, as its
name implies, is the central component in a computer system, the
component in which all computing functions take place. All of the
functions of a central processing unit are contained in a micro-
processor unit (or MPU). Your Apple computer’s MPU —as well as
its CPU —is a large-scaled integrated circuit (LSI) (a 6502B chip if
you own an Apple Ile, and a 65C02 chip if you own an Apple Ilc).

4 Apple Roots

o A memory. Memory can be further divided into RAM (random-
access memory) and ROM (read-only memory). These two types of
memory are discussed in the following section.

e Some input/output (I/0) devices. Your computer’s main input
device is its keyboard. Its main output deviee is its video monitor.
Other devices that your Apple can be connected to —or, in comput-
er jargon, can be interfaced with—include telephone modems,
graphics tablets, printers, and disk drives.

Figure 1-1 is a block diagram that illustrates the architecture of the
Apple Ile and the Apple Ile. In this chapter we will not concern our-
selves with the I/0. However, keyboard and screen I/0 will be covered
later, beginning with Chapter 8.

Your Apple’s Memory

Figure 1-1 shows the two kinds of memory a computer has: random-
access memory (RAM) and read-only memory (ROM). The important
difference between them is that RAM can be modified, while ROM can-
not. ROM is permanently etched into a bank of memory chips inside
your Apple, so it’s always there, whether the power to your computer is
off or on. Every time you turn off your Apple, everything that you've

8-Bit Data Bus

Y r

Memory

Input/OQutput CPU
1/0) (6502B/65C02) RAM | ROM

I i L]

16-Bit Address Bus

Figure 1-1. Block diagram of a microcomputer

Breaking the Assembly Language Barrier 5

stored in RAM immediately disappears. But everything in ROM
remains and will spring back into action when you turn your computer
on again.

The largest block of ROM in your Apple extends from memory
address 53248 (3D000 in hexadecimal notation) to memory address
65535 ($FFFF in hexadecimal notation). A number of important pro-
grams are permanently situated in this block of ROM, including your
computer’s BASIC interpreter and its built-in machine-language
monitor.

Machine-Language Programs in RAM In introductory books about
computers, a bank of RAM is often compared to a bank of mailboxes
built into a wall in a postal station. Each memory address in a RAM
bank, like each mailbox in a tier of post office boxes, has an identifying
number. And a computer program (like an ideal employee in a post
office) can get to any of the memory addresses in a bank of RAM with
equal ease. In other words, information stored in RAM can be retrieved
at random. That's why RAM is called random-access memory.

What happens when your computer processes a machine-language
program? Every machine-language program is made up of a series of
numbers. When a machine-language program is loaded into a comput-
er’'s memory, the numbers that make up the program are stored in a
series of addresses in RAM. The starting address of the memory block
in which the program is stored (known as the program’s origin address)
is usually stored in a special, predetermined memory location. Thus,
when it is time to run the program, its starting address can be easily
located.

Once a machine-language program has been loaded into RAM and
its origin address has been stored in an accessible memory location, the
program can be executed in several ways. For example, a machine-
language program stored in an Apple II computer can be executed
using a CALL instruction, a USR(X) instruction, a ProDOS dash (—)
command, or a ProDOS BRUN command. These and other methods for
running machine-language programs will be explained in Chapter 5.

Processing Executable Code When your computer goes to a memory
location that has been identified as the starting address of a program, it
should find the beginning of a block of executable code—that is, the
beginning of a machine-language program. If it finds a program, it will
carry out the first instruction in that program and then move on to the
next consecutive address in its memory.

Your computer will keep repeating this process until it either

6 Apple Roots

reaches the end of a program or encounters an instruction telling it to
jump to another address.

Your Apple’'s CPU

In a microcomputer, a central processing unit (CPU) usually consists of
a single microprocessor chip. Apple Ilc and Apple Ile computers use
either the 6502B chip or the 65C02.

The 6502B chip was designed for the Apple Ile and was originally
built into all Apple II¢’s. The 65C02 was designed for the Apple Ilc and
is the only microprocessor that has ever been used in the Ile. The 65C02
is now being built into all new Apple IIe’s and is available as an
optional, user-installable upgrade to older Ile’s.

Both the 6502B chip and the 65C02 chip are improved and updated
versions of an earlier chip, the 6502, developed by MOS Technology, Inc.
The 6502 and chips based on it are used not only in Apple computers,
but also in personal computers manufactured by Atari, Commodore,
and several other companies.

The 6502B chip used in the Apple Ile is really just a faster-running
version of the original 6502. But the 65C02 that’s built into the Apple
IIc and newer Apple Ile’s has some extra capabilities that the old 6502
didn’t have. In addition to being faster than the 6502, it uses less power,
and it recognizes a number of instructions that the 6502 didn’t under-
stand. The 65C02 also has some additional addressing modes, a feature
that will be explained in a later chapter.

For most purposes, however, the similarities among the 6502B, the
65C02, and the other chips in the 6502 family are more important than
their differences. Although the model numbers of 6502-series chips may
sometimes get confusing, all of the chips in the 6502 family are
designed to be programmed using the same assembly-language dialect
generically known as 6502 assembly language. Once you learn how to
write programs in 6502/65C02 assembly language, you’ll be able to pro-
gram many different kinds of personal computers in addition to your
Apple, including many manufactured by Atari and Commodore.

Even more important, the principles used in Apple assembly-
language programming are universal; they're the same principles that
all assembly-language programmers use, no matter what kinds of com-
puters they’re writing programs for. Once you learn 6502/65C02 assem-
bly language, therefore, you can easily learn to program other kinds of
chips, such as the Z80 chip used in Radio Shack and CP/M-based com-
puters, and even the powerful newer chips used in 16-bit and 32-bit
microcomputers such as the Apple Macintosh and the IBM PC.

Breaking the Assembly Language Barrier 7

Compilers, Interpreters, and Assemblers

Now that you have a basic understanding of what your Apple is made of
and how it works, we're ready to take a closer look at the relationship
among the three categories of computer languages: machine language,
assembly language, and high-level languages.

High-level languages did not get their name because they’re particu-
larly esoteric or profound. They're called high-level languages merely
because they're several levels removed from machine language, your
computer’s native tongue.

There are hundreds, perhaps thousands, of high-level languages, but
most of them have at least one feature in common: they all bear at least
a passing resemblance to English. BASIC, for example, is made up
almost completely of instructions—such as PRINT, LIST, LOAD, SAVE,
GOTO, and RETURN—that are derived from English words. Most
other high-level languages also have instruction sets based largely upon
plain-language words and phrases.

But computers can’t understand a word of English; the only lan-
guage they can understand is machine language, which is composed
only of numbers. For this reason, a program written in any other lan-
guage has to be translated into machine language before a computer
can understand it. As mentioned previously, people who write programs
in assembly language usually use special software products called
assemblers to convert assembly language programs to machine lan-
guage. Similarly, people who program in high-level languages use spe-
cial kinds of software packages called interpreters and compilers to help
them translate the programs they have written into machine language.

Interpreters and Compilers

The most important difference between interpreters and compilers is
that an interpreter is designed to convert a program into machine lan-
guage every time the program is run, while a compiler is designed to
convert a program into machine language only once. When you write a
program using an interpreter, you can store the program on a disk in
its original form; your interpreter will automatically convert it into
machine code every time you run it. But when a program is written
using a compiler, it has to be converted into machine language and then
stored on a disk as a machine-language program. Then it can be run
like any other machine-language program, without any further need for
a compiler.

8 Apple Roots

Interpreters are easier to use than compilers because they're
designed to be “transparent” to the user; that is, they are so unobtrusive
that you're not even aware they’re there. The BASIC utility that's built
into your Apple Ilc or Apple lle is an interpreter, and using it will show
you how transparent a BASIC interpreter can be. When you write a
program in Applesoft BASIC, your computer’s built-in interpreter
translates every line of code that you write, as you write it, into a special
kind of language called a tokenized language. Then, each time the pro-
gram is run, it is translated into machine language.

This is a very roundabout way to run a program, and it’s one factor
that makes BASIC a rather slow-running language. But the process
does work quite smoothly; if you've ever run an Applesoft BASIC pro-
gram, you probably never even noticed the process of BASIC-to-
machine-language translation.

One advantage of interpreters over compilers is that they can check
each line of a program for obvious errors as soon as the line is written.
If they don’t check each line, they usually do spot errors as soon as the
program is run. The errors can then be fixed on the spot. Compilers are
less interactive. Most compilers can’t check a program for errors until
the program has been compiled. After an error is found and fixed, the
program must be compiled again.

Compilers do have one significant advantage over interpreters: they
produce faster-running programs. When a program is written using an
interpreter, it has to be processed through the interpreter every time
it's run. But a compiler has to do its job just once and never has to be
used when a program is actually running.

Assemblers and Assembly Language

Assembly language, as we have seen, is neither an interpreted language
nor a compiled language. Converting an assembly-language program
into machine language requires an assembler-editor (also referred to as
an assembler).

Because of the close relationship between machine language and
assembly language, an assembler does not have nearly as difficult a task
as an interpreter or a compiler. Each time an interpreter or compiler
converts an instruction into machine language, a block—sometimes a very
large block—of machine code has to be generated. But an assembler has
to translate only one instruction at a time. The instructions used in
assembly language perform much simpler functions than the instruc-
tions used in most high-level languages, so source-code programs written
in assembly language tend to be much longer than similar programs

