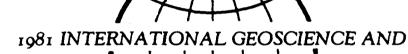


## DIGEST

VOLUMEI




1981 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS '81)





VOLUME

**DIGEST** 



REMOTE SENSING SYMPOSIUM (IGARSS'81)



sponsored by the
IEEE Geoscienge and Remote Sensing Society



IEEE Catalog No. 81CH1656-8

5506356

# 1981 IEEE INTERNATIONAL GEOSCIENCE & REMOTE SENSING SYMPOSIUM

## DIGEST

0) 7/-C
Copyright © 1981 by

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

DIGEST EDITOR: Keith R. Carver

345 East 47 Street, New York, New York 10017.

Responsibility for the contents of the papers published in this DIGEST rests upon the authors and not upon the IEEE or any of its members. All publication rights, including translations, are reserved by the IEEE and granted only on request. Abstracting is permitted with mention of sources.

Additional copies of the DIGEST are available from:

The Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane
Piscataway, New Jersey 08854

Order by IEEE Catalog Number 81CH1656-8 Library of Congress Catalog Card 81-80854

### WELCOME

On behalf of the IEEE Geoscience and Remote Sensing Society and the IGARSS'81 Executive Committee, welcome to the 1981 International Geoscience and Remote Sensing Symposium. IGARSS'81 is sponsored by the IEEE Geoscience and Remote Sensing Society and is cosponsored by numerous professional and governmental organizations with vigorous interest in and commitment to the field of remote sensing. The year 1981 marks the twentieth anniversary of the founding of the IEEE Geoscience and Remote Sensing Society, and the strong technical program published in this Digest indicates the breadth and vigor of recent activity in this important field. The theme of IGARSS'81, "Recent Advances in Remote Sensing," reflects the recognition of the rapid rate of development of remote sensing techniques and their applications for monitoring the earth's environment, surface and sub-surface.

For remote sensing research to become of general use to mankind, we need to integrate our knowledge of and peron the various geoscientific disciplines: strumentation systems and data processing techniques; and the physical models of the sensor interaction with natural surface and media. Successful integration of these elements of the remote sensing process relies heavily on the level of communication among the members of the various scientific and technological communities who together form the "remote sensing community." To enhance the effectiveness of these communication channels, the technical program of IGARSS'81 has been structured to provide a comprehensive review of progress in virtually every geoscientific disciplinary area which uses remote sensing techniques, earthborne and spaceborne sensor systems, and theoretical methods applicable to data processing, analysis, and interpretation.

The technical program of IGARSS'81 has been divided among 30 technical sessions dealing with recent scientific programs and instrumentation approaches in oceanography, geology, agriculture, meteorology, hydrology, and other geoscientific disciplines as well as major remote sensing systems programs and theoretical modeling approaches. Many of these sessions have been highlighted by a Feature Paper, given by a universally recognized authority in the appropriate disciplinary area. These Feature Papers provide a broad-brush portrait of recent progress in geoscience and remote sensing and will outline future challenges for the engineering and scientific community. In addition to the Feature Papers, approximately 50 percent of the

papers given have been invited from authorities selected to give IGARSS'81 attendees more detailed reviews of recent work in specific technical and scientific investigations. The remaining papers have been carefully selected to provide the best possible technical balance for IGARSS'81, and report on many of the major geoscientific and instrumentation efforts currently in progress both in the United States and abroad.

IGARSS'81 is truly international in flavor and a vigorous effort has been made to insure participation by the world geoscientific and remote sensing community in technical planning as well as technical reporting at IGARSS'81. Readers will find of particular interest papers dealing with remote sensing activities in Canada, France, Germany, Denmark and other countries. The strong European participation in IGARSS'81 is appropriate in view of the fact that IGARSS'82 will be held at the University of Munich.

The breadth and balance of the IGARSS'81 technical program is the result of the work of the Technical Program Committee and the Session Chairmen, many of whom spent a substantial portion of their time in planning for the best possible papers. Of course, the primary debt of gratitude is owed to the authors of those papers herein, who have realized the significance of publishing important, timely results in this Digest of the 1981 International Geoscience and Remote Sensing Symposium.



F. T. Ulaby General Chairman



K. R. Carver Technical Program Chairman

### **IGARSS '81 SPONSORS**

The symposium is sponsored by the Geoscience and Remote Sensing Society (GRS-S) of the Institute of Electrical and Electronics Engineers (IEEE). It is co-sponsored by the:

American Geophysical Union (AGU)

Canadian Remote Sensing Society (CRSS)

Deutsche Forschungs- und Versuchsanstalt für Luft und

Raumfahrt (DFVLR)

European Association of Remote Sensing Laboratories (EARSeL)

European Space Agency (ESA)

IEEE Council on Oceanic Engineering (COE)

**IEEE Washington Section** 

National Aeronautics and Space Administration (NASA)

National Oceanic and Atmospheric Administration (NOAA)

Terrain and Sea Scatter Group (TASS)

## **IGARSS '81 Executive Committee**

General Chairman

F. T. Ulaby

University of Kansas

**Publicity and Publications** 

K. Sam Shanmugam University of Kansas

Treasurer

J. Eckerman

**NASA Goddard Space Flight** 

Center

Advisor

E. A. Godby

Canada Centre for Remote

Sensina

Advisor

J. Taranik

NASA Headquarters

**Technical Program** 

K. R. Carver

**New Mexico State University** 

(NASA Headquarters)

Local Arrangements

Wm. Hibbard

NASA Goddard Space Flight

Center

**TASS** 

R. Lang

George Washington

University

Advisor

P. Gudmansen

Technical University of

Denmark

## **IGARSS '81 TECHNICAL PROGRAM COMMITTEE**

Keith R. Carver

Chairman

New Mexico State University

(NASA Headquarters)

Peter C. Badgley

Office of Naval Research

**Donald Barrick** 

National Oceanic & Atmospheric Administration

Johann Bodechtel University of Munich

Lloyd Breslau U.S. Coast Guard Research

Center

Gary Brown
Applied Science Associates

Victor Klemas

University of Delaware

Haralambos Kritikos University of Pennsylvania

David Landgrebe Purdue University

Jeffrey Lytle

Lawrence Livermore

Laboratory

Robert MacDonald

NASA Johnson Space Center

Steven Saunders

Jet Propulsion Laboratory

**Mark Settle** 

**NASA Headquarters** 

Vince Salomonson

NASA Goddard Space Flight

Center

Calvin T. Swift

**NASA Langley Research** 

Center

Kiyo Tomiyasu

General Electric Company Valley Forge Space Center

**Edward Wolff** 

NASA Goddard Space Flight

Center

## **IGARSS '81 LOCAL ARRANGEMENTS COMMITTEE**

William D. Hibbard

Chairman

NASA Goddard Space Flight

Center

Jerome Eckerman
NASA Goddard Space Flight

Center

Thomas Lynch

NASA Goddard Space Flight

Center

Thomas Schmugge

NASA Goddard Space Flight

Center

Thomas Doeppner

**General Research Corporation** 

## IGARSS '81 PUBLICITY & PUBLICATIONS COMMITTEE

K. Sam Shanmugam

Chairman

University of Kansas

Andrew Blanchard Texas A&M University

Richard Doviak

National Severe Storms Laboratory

**Jack Paris** 

NASA Johnson Space Center

Alois Sieber

**DFVLR** 

Herschel Stiles

University of Kansas

William T. Walton

NASA Goddard Space Flight Center

TECHNICAL SESSIONS

. .

#### PLENARY SESSION

٠,,

June 8, 1981 9:45 a.m. - 12:00 noon Grand Ballroom

Chairman: Fawwaz T. Ulaby

Remote Sensing Laboratory University of Kansas

#### KEYNOTE ADDRESSES:

 NEW ADVANCES AND FUTURE CHALLENGES IN MARINE GEOPHYSICAL TECHNOLOGY

Manik Talwani Director, Lamont-Doherty Geological Observatory of Columbia University

2. THE FUTURE OF SATELLITE REMOTE SENSING

David S. Johnson Chairman, Satellite Task Force National Oceanic & Atmospheric Administration

E. Larry Heacock National Earth Satellite Service National Oceanic & Atmospheric Administration

3. EUROPEAN SATELLITE REMOTE SENSING ACTIVITIES OF THE 1980's

A. M. Hieronimus Head, Applications Program Department European Space Agency Session No. 1

ADVANCED SENSORS

June 8, 1981 1:30 - 5:30 p.m. GBR Room B

Chairman: Kiyo Tomiyasu General Electric Co. Valley Forge Space Center, PA

## **TABLE OF CONTENTS**

|           | GARSS'81                                                                                                                                                 | iii      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| IGARSS'81 | · ·                                                                                                                                                      | V<br>V   |
|           | Executive Committee Technical Program Committee                                                                                                          | vi<br>Vi |
|           | Local Arrangements Committee                                                                                                                             | vi<br>vi |
|           | Publicity & Publications Committee                                                                                                                       | vi       |
|           | TECHNICAL PROGRAM                                                                                                                                        | 1-1      |
|           | Volume I                                                                                                                                                 |          |
| PL        | ENARY SESSION                                                                                                                                            | 1-2      |
| AD        | VANCED SENSORS                                                                                                                                           | 1-3      |
|           | Itispectral Scanner, Thematic Mapper, and Beyond, C. hard Jones and Jack L. Engel                                                                        | 1        |
|           | uttle Imaging Radar: Research Sensor for Earth Resources servations, Charles Elachi                                                                      | 12       |
|           | Shuttle Scanning Laser Altimeter for Topographic Map-<br>g, Michael Kobrick & Charles Elachi                                                             | 18       |
|           | ferential Absorption Lidar Measurements of Atmospheric inperature and Pressure Profiles, C. Laurence Korb                                                | 23       |
|           | tatic Lidar: A Tool for Characterizing Atmospheric Par-<br>plates, John A. Reagan and Benjamin M. Herman                                                 | 34       |
|           | vanced Millimeter and Submillimeter Wavelength Sensors Upper Atmospheric Research, Joseph W. Waters                                                      | 45-1     |
|           | Microwave Pressure Sounder, G. E. Peckham and D. A. wer                                                                                                  | 46       |
| An        | Imaging Microwave Radiometer, C. R. Francis                                                                                                              | 52       |
| 2. NII    | MBUS-7 SMMR RESULTS, I                                                                                                                                   | 59-1     |
| (SM       | MBUS-7 Scanning Multichannel Microwave Radiometer (MR): In-Orbit Performance Appraisal, P. Gloersen, D. J. valleri, and J. A. Gatlin                     | 60       |
|           | servation of Sea Ice Properties with the NIMBUS-7 SMMR, J. Cavalieri, P. Gloersen, and W. J. Campbell                                                    | 69       |
| Ice       | ne-Sequential Multispectral Observation of the Greenland Sheet, P. Gloersen, D. J. Cavalieri, J. C. Comiso, H. J. ally, W. J. Campbell, and P. Gudmansen | 79       |
| Rat       | a Surface Temperature, Near-Surface Wind, and Rainfall te Inferred from NIMBUS-7 SMMR Observations, A. T. C. ang and P. Gloersen                         | 82       |
| 7 S       | obal Snow Cover of 1978-79 as Observed with the NIMBUS-<br>MMR, K. F. Kuenzi, S. Patil, H. Rott, A. T. C. Chang, and E.<br>ngham                         | 83       |
| Lai       | iA.i.e.i.                                                                                                                                                | 00       |

|    | Comparisons of NIMBUS-7 SMMH and Aircraft Measurements of Near-Surface Wind Speeds and Ocean Surface Temperatures, D. Ross and P. Gloersen                                                                                                                                                                                                                    | 85    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | NIMBUS-7 SMMR Evaluation Performed During the Norwegian Remote Sensing Experiment (NORSEX), B. A. Farrelly, J. Johannessen, O. M. Johannessen, K. Kloster, I. Horjen, W. J. Campbell, J. Crawford, R. F. Harrington, W. L. Jones, Jr., C. T. Swift, D. J. Cavalleri, P. Gloersen, S. V. Hsiao, H. H. Shemdin, T. W. Thompson, C. Maetzler, and R. O. Ramseier | 86    |
| 3. | REMOTE SENSING AND HYDROLOGY                                                                                                                                                                                                                                                                                                                                  | 88-1  |
|    | Water Resources Management and Remote Sensing, Robert M. Ragan                                                                                                                                                                                                                                                                                                | 89    |
|    | Application of GOES Meteorological Satellite Data to<br>Analysis of a Major Mesoscale Event, R. F. Wachtman, M.<br>Weiss and T. H. Vonder Haar                                                                                                                                                                                                                | 102   |
|    | Land Surface Features as Indicators of Surface Charac-<br>teristics for Input to Large Scale Hydrological Models, J. P.<br>Ormsby                                                                                                                                                                                                                             | 103   |
|    | Runoff Modelling from Snow Covered Areas, J. Martinec                                                                                                                                                                                                                                                                                                         | 113   |
|    | Survey Paper on Remote Sensing Techniques to Map Snow Cover, James C. Barnes                                                                                                                                                                                                                                                                                  | 123   |
|    | NOAA/NESS Satellite Snowmapping Techniques, S. R. Schneider and D. F. McGinnis, Jr.                                                                                                                                                                                                                                                                           | 133   |
|    | Potential Improvements in Hydrological Surveys Using Forthcoming Satellite Sensors, V. Salomonson                                                                                                                                                                                                                                                             | 141   |
| 4. | METEOROLOGICAL REMOTE SENSING, I                                                                                                                                                                                                                                                                                                                              | 141-1 |
|    | The Promise of Remote Sensing in the Atmospheric Sciences, David Atlas                                                                                                                                                                                                                                                                                        | 142   |
|    | Doppler Weather Radar for Forecasting and Warning, R. J.<br>Doviak                                                                                                                                                                                                                                                                                            | 152   |
|    | Passive Microwave Remote Sensing for Meteorology, David<br>H. Staelin                                                                                                                                                                                                                                                                                         | 158   |
|    | Lidar Meteorology, E. V. Browell and S. T. Shipley                                                                                                                                                                                                                                                                                                            | 163   |
|    | Passive Optical and Infrared Meteorology, Moustafa T.<br>Chahine                                                                                                                                                                                                                                                                                              | 170   |
|    | Acoustic Radar Meteorology, William D. Neff                                                                                                                                                                                                                                                                                                                   | 181   |
|    | A 35 GHz Dual-Polarization Doppler Radar for Meteorological<br>Research, Fausto Pasqualucci                                                                                                                                                                                                                                                                   | 182   |
|    | A Technique for Determining the Temperature Profile from VHF Radar Observations, K. S. Gage and J. L. Green                                                                                                                                                                                                                                                   | 187   |
| 5. | REMOTE SENSING FOR GEODYNAMICS                                                                                                                                                                                                                                                                                                                                | 194-1 |
|    | The Application of Space Technology to Geodynamics - An Overview, Thomas L. Fischetti                                                                                                                                                                                                                                                                         | 195   |

|           | Geodesy by Radio Interferometry: A Critical Review, Irwin I.<br>Shapiro                                                                                        | 206          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|           | SERIES - Satellite Emission Range Inferred Earth Surveying,<br>Peter F. MacDoran                                                                               | 218          |
|           | Miniature Interferometer Terminals for Earth Surveying (MITES): Geodetic Results and Multipath Effects, C. C. Counselman, III                                  | 219          |
|           | Early Experience with a Highly Mobile Lageos Ranging System, Eric C. Silverberg, David Dittmar, Richard Eanes, and Randall L. Ricklefs                         | 225          |
|           | Airborne Laser Ranging System for Monitoring Regional Crustal Deformation, John J. Degnan                                                                      | 234          |
|           | A Spaceborne Superconducting Gravity Gradiometer for Mapping the Earth's Gravity Field, H. J. Paik                                                             | 245          |
|           | Description of the Dedicated Gravitational Satellite Mission (GRAVSAT), V. L. Pisacane, J. C. Ray, J. L. MacArthur, and S. E. Bergeson-Willis                  | 254          |
|           | Shuttle Experiment to Demonstrate High Accuracy Global Time and Frequency Transfer, R. Decher, D. W. Allan, C. O. Alley, R. F. C. Vessot, and G. M. R. Winkler | 270          |
| <b>6.</b> | INFORMATION EXTRACTION TECHNIQUES Status and Directions for Analysis Technology for Land Remote Sensing, David A. Landgrebe                                    | 270-1<br>271 |
|           | Use of the Facet Model in Remotely Sensed Image Context<br>Analysis, R. M. Haralick                                                                            | 272          |
|           | A Model for Simulation and Processing of Radar Images, J. A. Stiles, V. S. Frost, K. S. Shanmugam, and J. C. Holtzman                                          | 273          |
|           | The Use of Crop Profile Models for LANDSAT Observations in Inventory Applications, Richard P. Heydorn                                                          |              |
|           | Contextual Classification of Multispectial Image Data, James C. Tilton and Philip H. Swain                                                                     |              |
|           | Selective Image Enhancement and Restoration, Nguyen Phu<br>Thien                                                                                               | 291          |
|           | A Method for Contours Detection, Segmentation and Classification of LANDSAT Images, L. Asfar                                                                   | <b>29</b> 8  |
| 7.        | GEOLOGY: MINERAL & ENERGY RESOURCE INVESTIGATIONS                                                                                                              | 304-1        |
|           | Applications of Remote Sensing to Petroleum Exploration, Michel T. Halbouty                                                                                    | 305          |
|           | Exploration for Fractured Petroleum Reservoirs Using Radar/LANDSAT Merge Combinations, H. MacDonald, Wm. Waite, C. Elachi, M. Borengasser, and D. Tolman       | 312          |
|           | Remote Sensing and Uranium Exploration at Lisbon Valley, Utah, James E. Conel and Preston L. Niesen                                                            | 318          |
|           | Definition of Alteration Belts in the Walker Lake, Nevada-<br>California 1° x 2° Quadrangle, Lawrence C. Rowan and Terri<br>L. Purdy                           | 325          |

|              | Applications of Remote Sensing to Porphry Copper Exploration with Emphasis on the Proposed LANDSAT-D Thematic Mapper, Michael Abrams, David Brown, Larry Lepley and Ray Sadowski                           | <b>33</b> 1 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|              | Remote Mineralogical Analysis using a High-Resolution Airborne Spectroradiometer: Preliminary Results of the Mark II System, William Collins, Shen-Huel Chang, John T. Kuo and Lawrence C. Rowan           | 337         |
|              | Narrow-band IR Radiometry for Mineral Identification:<br>Shuttle Multispectral Infrared Radiometer (SMIRR) Aircraft<br>Test Results, Alexander F. H. Goetz and Lawrence C. Rowan                           | 345         |
| 8 <b>A</b> . | NIMBUS-7 SMMR RESULTS, II                                                                                                                                                                                  | 347-1       |
|              | Remote Sensing of the Wind Intensity in Tropical Storms with the NIMBUS-7 Scanning Multichannel Microwave Radiometer, P. W. Rosenkranz                                                                     | 348         |
|              | Comparison of Surface Observations and NOAA Satellite Imagery with the NIMBUS-7 SMMR Data for the Bering Sea during March, 1979, S. Martin, S. L. McNutt, D. J. Cavalieri, P. Gloersen, and W. J. Campbell | 349         |
|              | NIMBUS-7 SMMR Observations of Rainfall in Tropical Cyclones, J. Weinman, W. Olson and P. Gloersen                                                                                                          | 350         |
|              | Comparison of Surface Wind Speeds from the Scanning Multichannel Microwave Radiometer (SMRR) with Surface Analyses in the Northeast Pacific Ocean, J. R. Miller, J. E. Geyser, and A. T. C. Chang          | 351         |
| 8B.          | NEW SENSING AND DATA HANDLING TECHNIQUES                                                                                                                                                                   | 352-1       |
|              | Remote Sensing of Crustal Dynamics by Satellite Doppler Techniques, G. C. Weiffenbach                                                                                                                      | 353         |
|              | Remote Sensing Applications for Mine Waste Stability Monitoring using the Acoustic Emission Method, Robert M. Koerner, Arthur E. Lord, Jr., and W. Martin McCabe                                           | 355         |
|              | Simultaneous Lidar Measurements of Temperature and Humidity Profiles: Error Analysis, D. B. Hogan and A. Rosenberg                                                                                         | 360         |
|              | Guidelines for the Selection of an Integrated Interactive<br>System for Remote Sensing Data Processing, Norberto<br>Scquizzato                                                                             | 361         |
| 9.           | REMOTE SENSING OF SOIL MOISTURE                                                                                                                                                                            | 363-1       |
|              | Soil Moisture Inferences from Thermal Infrared<br>Measurements of Vegetation Temperatures, Ray D. Jackson                                                                                                  | 364         |
|              | Effects of Vegetation on Passive Microwave Estimates of Soil Moisture, Thomas J. Jackson, Thomas J. Schmugge, and James R. Wang                                                                            | 375         |
|              | Effects of Varying Soil Moisture Contents on Microwave Emissions at 21, 2.8, and 1.67 cm from Agricultural Fields, Hsiao-hua K Burke and Thomas J. Schmudge                                                | 388         |

|     | Soil Moisture Information and Thermal Microwave Emission, R. W. Newton, Q. R. Black, S. Makanvand, A. J. Blanchard and B. R. Jean      | 396   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | Numerical Simulation of Soil Brightness Temperatures at $\lambda$ = 21 cm, T. Mo and T. J. Schmugge                                    | 414   |
|     | Soil Moisture Content and Microwave Backscatter in the 1 - 9 GHz Region, T. Le Toan, M. Pausader, G. Flouzat, and A. Fluhr             | 426   |
|     | Resolution Requirements for a Soil Moisture Imaging Radar, C. Dobson, F. Ulaby, J. Stiles, R. K. Moore, and J. Holtzman                | 427   |
| 10. | METEOROLOGICAL REMOTE SENSING, II                                                                                                      | 442-1 |
|     | Applications of Remote Sensing to Wind Power Facility Siting, John E. Wade, Charles L. Rosenfeld, Peter A. Maule                       | 443   |
|     | Combining Satellite, Radar and Conventional Data to Observe Mesoscale Features Pertinent to Thunderstorm Develop- ment, R. M. Zehr     | 449   |
|     | Remote Determination of Cloud Properties from Solar<br>Photometric Data, Gordon Lerfald                                                | 455   |
|     | Detéction of Regional Air Pollution Episodes Utilizing Satellite Data in the Visual Range, C. J. Bowley, H. K. Burke, and J. C. Barnes | 461   |
|     | Recent Improvements in Deriving Sea Surface Temperatures from the NOAA-6 Satellite System, Charles C. Walton                           | 470   |
|     | Horizontal Correlation of Satellite Temperature Errors,<br>Carmella D. Watkins                                                         | 471   |
|     | Objective Analysis of Satellite Cloud Imagery, R. S. Hawkins                                                                           | 477   |
| 11. | REMOTE SENSING OF PLANETARY SURFACES                                                                                                   | 482-1 |
|     | Spacecraft Imaging of Planets: Camera Systems from<br>Mariner to Space Telescope, G. Edward Danielson, and Fred<br>E. Vescelus         | 483   |
|     | Geological Analysis of Global Exploratory Imaging: The Challenge of Viking Mars Data, Karl R. Blasius                                  | 490   |
|     | Spectral Mapping of Planetary Surface Geochemical Units,<br>Carle M. Pieters                                                           | 497   |
|     | Earth-based and Earth Orbital Observations of Solar System Bodies, Harold J. Reitsema                                                  | 505   |
|     | Planetary Studies using Bistatic Radar, Richard A. Simpson and G. Leonard Tyler                                                        | 510   |
|     | Earth-based Radar Studies of Planetary Surfaces and Atmospheres, R. F. Jurgens                                                         | 519   |
|     | Earth-based Radio Measurements of the Planets, John R. Dickel                                                                          | 520   |
|     | The UCL Interactive Planetary Image Processing System (IPIPS); Application to Remote Sensing Studies in Planetary                      | 520   |

| 12. | DATA PREPROCESSING                                                                                                                                       | 532-1 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | Integration of Remote Sensor and Conventional Geophysical Data, Robert D. Regan                                                                          | 533   |
|     | Parallel Approaches to Remote Sensing Data Reduction,<br>James P. Strong and Peter D. Argentiero                                                         | 534   |
|     | Application of Parallel Array Processors for SEASAT SAR Processing, B. Barkan, C. Wu, W. Karplus, and D. Caswell                                         | 541   |
|     | A Digital SEASAT SAR Correlation - Simulation Program, F. Li and H. Zebker                                                                               | 548   |
|     | Geometric Correction Resampling for the LANDSAT-D Thematic Mapper, Jon E. Avery and James S. Hsieh                                                       | 555   |
|     | Impact of VLSI/VHSIC on Satellite On-Board Signal Processing, J. V. Aanstoos, W. H. Ruedger, W. E. Snyder, and W. L. Kelly, IV                           | 556   |
|     | Using Radar Image Simulation to Assess Relative Geometric Distortions inherent in Radar Imagery, W. V. Kaupp, H. C. MacDonald, W. P. Waite               | 567   |
|     | Radar Image Processing for Rock Type Discrimination,<br>Ronald Blom and Mike Daily                                                                       | 574   |
|     | LANDSAT Images Multitemporal Analysis, Marie-France<br>Oudin                                                                                             | 582   |
| 13. | GEOLOGY: LITHOLOGIC AND GEOBOTANICAL STUDIES Graham Hunt Memorial Session                                                                                | 587-1 |
|     | Importance of Discrimination in Geologic Interpretation of Digital Images, Gary L. Raines                                                                | 588   |
|     | Spectral Stratigraphy of the Fort Union/Wasatch Transition,<br>Patrick Draw GEOSAT Petroleum Test Site, Wyoming, Harold R. Land and Kathleen W. Baird    | 589   |
|     | Use of Multispectral Scanner Images for Assessment of Hydrothermal Alteration in the Marysvale, Utah Mining District; M. H. Podwysocki and D. B. Segal   | 595   |
|     | Rock Type Discrimination Techniques using LANDSAT and SEASAT Image Data, Ronald Blom, Michael Abrams and Cathy Conrad                                    | 597   |
|     | The Role of Geological Surfaces ion Determining Visible-<br>Near Infrared Spectral Signatures, S. E. Sommer and W. F.<br>Buckingham                      | 603   |
|     | Derivation of Compositional Information from Multispectral Images, Diane L. Evans and John B. Adams                                                      | 608   |
|     | Use of Reflectance Spectra of Native Plant Species for Interpreting Airborne Multispectral Scanner Data in the East Tintic Mountains, Utah, N. M. Milton | 614   |
|     | SEASAT L-band Radar Response to Forest Vegetation in Eastern Virginia, M. D. Krohn, N. M. Milton, D. Segal, J. Crowley, and A. England                   | 617   |
|     | Remote Sensing Information of the Cenozoic Volcanoes in China, Shu-peng Chen                                                                             | 619   |

| 14. | MICROWAVE REMOTE SENSING OF VEGETATION                                                                                                                                | 619-1              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     | An Approximate Model for Backscattering and Emission from Land and Sea, A. K. Fung and H. J. Eom                                                                      | 620                |
|     | Volumetric Effects in Cross-Polarized Airborne Radar Data,<br>A. J. Blanchard and S. W. Theis                                                                         | 629                |
|     | Radar Scattering from a Smooth Surface with a Vegetation<br>Layer Cover, Nader Engheta and Charles Elachi                                                             | 631                |
|     | Radiative Transfer Theory for Active and Passive Microwave<br>Remote Sensing of Vegetation with Cylindrical Structure, L.<br>Tsang, A. J. Blanchard, and R. W. Newton | 636                |
|     | First Results of Experiment using Radar for Wheat Growth Monitoring, Th. Le Toan, M. Huet, and A. Lopes                                                               | 637                |
|     | Crop Classification by Radar, F. T. Ulaby, R. Y. Li, and K. S. Shanmugam                                                                                              | 638                |
|     | Simulation of Background Clutter, Denis F. Strenzwilk                                                                                                                 | 648                |
| 15. | REMOTE SENSING OF SNOW AND ICE PROPERTIES                                                                                                                             | 653-1              |
|     | Radar Spectral Observations of Snow, W. H. Stiles, F. T. Ulaby, A. K. Fung, and A. Aslam                                                                              | 654                |
|     | Microwave Radiometry Approaches to Snow Property Determination, A. T. C. Chang                                                                                        | 669                |
|     | Microwave Emission Signatures of Snow in Finland, Martti<br>Tiuri                                                                                                     | 670                |
|     | Utilization of Remote Sensing in Alaskan Permatrost Studies,<br>Dorothy K. Hall                                                                                       | 676                |
|     | Correlation Function Studies for Microwave Remote Sensing of Snow and Ice, F. Vallese and J. A. Kong                                                                  | 685                |
|     | Mean Dyadic Green's Function for Remote Sensing of a Two-<br>Layer Random Medium, Michael Z. Zuniga and J-A Kong                                                      | 691                |
| 16. | GEOPHYSICAL INVERSION PRACTICE                                                                                                                                        | 6 <del>96</del> -1 |
|     | Global Sediment Acoustics from Sonobuoy Data, Robert E. Houtz                                                                                                         | 697                |
|     | Resonances in Acoustic Bottom Reflection and their Relation to the Ocean Bottom Properties, A. Nagl, H. Überall, and W. R. Hoover                                     | 703                |
|     | Interpretation of Narrow Beam Subbottom Sonar Echoes, R. Bolus and K. Sivaprasad                                                                                      | 710                |
|     | Acoustic Tomography, B. D. Cornuelle                                                                                                                                  | 716                |
|     | Adaptive Autoregressive Moving Average for Seismic Event Location, Bonnie Schnitta-Israel                                                                             | 722                |
|     | Inversion of Geophysical Data, Charles H. Stoyer                                                                                                                      | 728                |