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PREFACE

Nowadays, there hardly exists a branch of physics which one can
seriously approach without a thorough knowledge of Quantum
Mechanics. Its presentation, whicli is given in this work is, I hope,
simple enough to be accessible to the student, and yet sufficiently
complete to serve as a reference book for the working physicist.

This book resulted from a course given at the Center of Nuclear
Studies at Saclay since 1953. Numerous discussions with students as
well as with my colleagues, have helped me considerably in clarifying
its presentation. Several people to whom I had transmitted certain
parts of the manuscript, have kindly given me their criticism; among
them I should like to mention Messrs.  Edmond Bauer and Jean
Ulimo, to whom I am indebted for interesting remarks concerning the
presentation of principles. I am more particularly grateful to
Mr. Roger Balian for having critically examined a large portion of
the manuscript, and for having suggested to me a large number of
improvements. Finally, I wish to thank those of my students who
were kind enough to check over the text and the calculations of the
various chapters, and to help me with the correction of the proofs.

The problems which occur at the end of each chapter were chosen
not only for their educational value, but also'to point out certain
properties worthy of interest; this may explain the relative difficulty
of certain ones among them.

The several works or articles cited as references have the purpose -
of aiding the reader to complete or round out certain passages. It
was out of the question to give a complete bibliography of the various
subjects treated here. An entire volume would not have sufficed for that.

October, 1958 o ALBERT MESSIAH
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CHAPTER 1

THE ORIGINS OF QUANTUM THEORY

1. Introduction

Aocvording to the classical doctrine — generally adopted by physicists
until the beginning of the 20th century — one associates with physical
aystems whose evolution one wishes to describe, a certain number of
quantities or dynamical variables; each of these variables possesees
at each instant a well-defined value, and the specification of this set
of values defines the dynamical state of the system at that instant.
One further postulates that the evelution in time of the physical
system is entirely determined if one knows its state at a given initial
instant. Mathematically this fundemental axiom is expressed more
- precisely by the fact that the dynamical variables satisfy a system of
differential equations of the first order, as a function of time. The
program of Classical Theoretical Physics thus conaists in enumerating
the dynamical variables of the system under study, and then in
discovering the equations of motion which predict its evolution in
~ accord with experimental observation.

From the formulation of Rational Mechanics by Newton until the
end of the 19th century, this program was carried out with consider-
able success, each new experimental discovery being carried over to
the theoretical plane either by introducing new variables and new
equations, or by modifying the old equations, thereby allowing the
newly observed phenomenon to be incorporated into the general
.scheme. During that entire period no experimental fact, no discovery
led to any doubt conocerning the soundness of the program itself.
On the contrary, Classical Physics oonstantly progressed toward

" greater simplicity and greater unity. This happy evolution continued

until about 1900; subsequently, as our knowledge of phenomena on
the microeoopnc scale 1) becomes mere precise, Classical Theory runs

1) It is important to define the terms ° ‘microecopic’’ and ‘‘racroscopic’
of which we shall make frequent use throughout this book. We define the

“microscopic’’ scale as the one of atomic or subatomic phenomena, where the
lengths which enter into consideration are at most of the order of seversl
olngstroms (1 A = 10-% ¢cm). The “macroscopic’’ scale is the one of phenomena
observable with the naked eye or with the ordinary microscope, i.e. a resolution
of the order of one micron (10-¢ em) at best.




4 - THE ORIGINS OF QUANTUM THEORY [cH.1, §2

into more and more difficulties and contradictions. It rapidly becomes
evident that phenomena on the atomic and subatomic scale do not
fit into the framework of classical doctrine itself, and that their
explanation must be based upon entirely new principles. The discovery
of these new principles will occur in stages, at the expense of numerous
groping attempts; only around 1925, with the founding of Quantum
Mechanics, will we have at our disposal a coherent theory of micro-
scopic phenomena. The origins of this theory constitute the subject
of the present chapter.

After sketching an overall picture of Classical Theoretical Physiocs,
we shall discuss the main phenomena which justify the abandonment
of the classical ideas. The phenomena are supposed familiar to the
reader !); we shall therefore merely recall their easential features,
emphasizing above all the points of contradiction with Classical
Theory. The end of the chapter is devoted to a brief discussion of the
first attempts at explaining these phenomena, known as the Old
Quantum Theory.

I. THE END OF THE CLASSICAL PERIOD
2.- Classical Theoretical Physics

At the end of the classical period, the various branches of physics
are integrated in a general and coherent theoretical construct whose
main features are as follows. In the universe, one distinguishes two
categories of objects, matter and radiation. Matter is made up of
perfectly localizable corpuscles subject to Newton’s laws of Rational
Mechanics; the state of each corpuscie is defined at any instant by
its position and its velocity (or its momentum), that is six dynamical
variables in all. Radiation obeys Maxwell’s laws of electromagnetism ;
its dynamical variables — infinite in number — are the components
of the electric and magnetic fields at each point of space. In contrast
to matter, it is not possible to split radiation into corpuscles which can
be localized in space and maintain this localized character during
their evolution in the course of time; quite to the contrary, it exhibits
a wave-like behavior which manifests itself particularly in the well-
known phenomena of interference and diffraction.

1) One may find a detailed discussion of these phenomena in the works
dealing with Atomic Physics, for instance: M. Born, Atomic Physics, 6th ed.
(Blackie, Glasgow, 1957).
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The corpuscular theory of maiter continues to develop during the
course of the 19th century. While limited at first to the mechaniocs
of heavenly bodies and of solid bodies of maoroscopic dimensions, it.
emerges more and more as the basic theory governing the evolution
of matter on the microscopic scale to the extent that the atomic
hypothesis, proposed by the chemists, is confirmed. Without being
able to verify this hypothesis directly by isolating the molecules and
studying their mutual interactions, one can justify it indireotly by
showing that the macroscopic properties of material bodies derive
from the laws of motion of the molecules of which they are composeed.
Mathematically, we are dealing with a very complex problem. Under
this hypothesis, in fact, macroscopic quantities appear as the mean
values of certain dynamical variables of a system having a very large
number of degrees of freedom !); there is no hope of solving the
equations of evolution of such a system exactly, and one must have
recourse to statistical methods of investigation. Thus a new discipline
originated and developed, Statistical Mechanics, whose results,
- particularly in the study of gases (Kinetic Theory of Gases) and in
Thermodynamics (Statistical Thermodynamics) enable .us to verify
qualitatively, and within the limits set by the possibilities of calculation,
quantitatively, the foundation of a corpuscular theory of matter 3).

At the same time, the wave theory of radiation becomes solidly
estabhshed_ In the field of optics, the old controversy on the wave
nature or corpuscle nature of light is cut short in the first half of the
19th century, when decisive progress in the handling of problems
of wave propagation (Freenel) permits the exploration of all the
consequences of the wave hypothesis. All the known'light phenomena,
including geometrical optics can now be based on this hypothesis.
Meanwhile, the study of electric and magnetic phenomena develops
rapidly. The decisive step forward is taken by Maxwell when he
est.a.blmhea in 1855, the fundamental electromagnetioc equations.

1) WermﬂﬁmthenumborNofmobculespermob(Avogudrosnumbor)
is N = 6.02 X 10%. The first precise determination of N, due to Loschmidt
(1865), was based on the kinetic theory of gases. i

2) Ituwouwnotothstmdlmmmgofﬁhmmmmom.
underlies a hypothesis of & statistical nature, the hypothesis of molecular
chaos, from which one cannot escape without renouncing the statistical method

iteelf. Although this hypothesis seems intuitively correct, its rigorous justi-
fication (ergodic theorem) turned out to be pu'mmlnrly delmte and is still

the subject of controversy.




