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EDITOR’S FOREWORD

The problem of communicating in a coherent fashion recent developments in the
most exciting and active fields of physics continues to be with us. The enormous
growth in the number of physicists has tended to make the familiar channels of com-
munication considerably less effective. It has become increasingly difficult for experts
in a given field to keep up with the current literature; the novice can only be confused.
What is needed is both a consistent account of a field and the presentation of a definite
“point of view” concerning it. Formal monegraphs cannot meet such a need in a rapidly
developing field, while the review article seems to have fallen into disfavor. Indeed, it
would seem that the people most actively engaged in developing a given field are the
people least likely to write at length about it.

FRONTIERS IN PHYSICS was conceived in 1961 in an effort to improve the situ-
ation in several ways. Leading physicists frequently give a series of lectures, a graduate
seminar, or a graduate course in their special fields of interest. Such lectures serve to
summarize the present status of a rapidly developing field and may well constitute the
only coherent account available at the time. Often, notes on lectures exist (prepared
by the lecturer, by graduate students, or by postdoctoral fellows) and are distr’buted
in the mimeographed form on a limited basis. One of the principal purposes of the
FRONTIERS OF PHYSICS Series is to make such notes available to a wider audience
of physicists.

It should be emphasized that lecture notes are necessarily rough and informal,
both in style and in content; and those in the series will prove no exception. This is
as it should be. One point of the series is to offer new, rapid, more informal, and, it
is hoped. more effective ways for physicists to teach one another. The point is lost if
only elegant notes qualify.

As FRONTIERS OF PHYSICS has evolved, a third category of book, the infor-
mal text/monograph. an intermediate step between lecture notes and formal texts or
monographs, has played an increasingly important role in the series. In an informal text
or manograph an author has reworked his her lecture notes to the point at which the
manuscript represents a coherent summation of a newly-developed field, complete with
references and problems, suitable for either classroom teaching or individual study.

During the past two decades, the study of many-particle systems has become an
essential part of the education of graduate students in physics and chemistry, while the
application of nonperturbative approaches, functional integral techniques, and stcchas-
tic methods to these systems has led to an improved qualitative and quantitative un-
derstanding of their behavior. In the present volume, John Negele and Henri Orland,
two pioneers in these developments, provide the nonspecialist with a lucid introduc-
tion to these nonperturbative approaches, as well as to the “traditional” techniques
of many-body theory, perturbation theory, and general arguments using order parame-
ters, symmetry, and Fermi liquid theory. Given its emphasis on pedagogy and physical

xt
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*
understanding. their book will be welcomed by all scientists interested in understanding
many-body physics, from the beginning graduate student to the practitioner in univer-
sities, industry, or government. 1 share their view that “Quantum Many-Particle
Systems” conveys the essential ideas-of the field, and that it will assist students and

professionals alike in reading, understanding, and contributing to the literature.
e

DAVID PINES
Urbena, Hllinois
. April, 1987



PREFACE

The problem of understanding the properties of quantum systems possessing large
or infinite numbers of degrees of freedom pervades all of theoretical physics. Hence,
the theoretical methods and the physical insight which have been developed over the
years for quantum many-particle systems comprise an essential part of the education
of students in disciplines as'diverse as solid state physics, field theory, atomic physics.
condensed matter physics. quantum chémistry and nuclear physics. During the past
decade, we have taught one- and two-semester courses on the quantum ‘thébty of
_ many-particle systems to graduate students in these disciplines at the Massachusetts

‘Institute of Technology, and this book s an outgrowth of these lectures. = "~ -
" Compared to the texts that appeared in the early 1970's, we have preserited $tan-

_ dard topics from a different perspective and included a number of new developnierits.

Because of the physical appeal and utility of the Feynman path integral, we have used

functional integrals as tle foundation of our presentation.’ Functional integral tech-

niques provide an economical formalism for dériving familiar results, such as perturba-
tion expansions, and yield valuable new approximations and insight into such problems

_ as quantum collective motion, tunneling decay, and phase transitions. Because of the

" power and physical insights provided by these techniques and their prevalénce in the
literature, we believe it is essential to teach them to students at this level. - '

" Order parameters and broken symmetry play crucial roles in characterizing and un-
derstanding the phases in which matter exists and the transitions between these phases.
These concepts, which are familiar from the Landau theory of phase transitions, arise -
quite naturally from our general development In terms of functional integrals, and are

discussed in detail in this text. ' ‘ '

Another new topiq,is the use of stochastic methods for many-body problems.
Techniques have existed for a long time to use Markov random walks and Monte Carlo
evaluation of integrals to calculate quantum mech.anical observables of physical interest
to any desired degree of accuracy. In the past, such techniques have received less at-
tention than analytic methods involving summations of diagrams having undetermined
qonvergihce properties or other ultimately uncontrolled approximations. _We,beli;eve
that stochastic methods are intellectually interesting in their own right and that they
provide a powerful tool to obtain definitive answers to certain classes of otherwise
’insolvable problems. Hence, we have included a pedagogical introduction fo stochastic
_ methods, showing how to calculate observables of interest, stressing the physical con-
nection with path integrals, and demonstrating how to tailof the method to the physics
of the problem under consideration. ‘ o ,

The scope of this book is intended to be sufficiently broad to serve as a text for a
. -ones+or,two-semester graduate course. Thus. in addition to these new topics, we have
. also included the basic body of methodology found in older texts, such as perturbation
theory, Green's function techniques. and the Landau theory of Fermi liquids.

©oxm



xiv PREFACE

Our pedagogical objective is to convey the essential ideas and to prepare the
student to read and understand the relevant research literature. We have attempted
to present the formalism tersely, without undue emphasis on technical details and to
show how it applies to a broad variety of interesting physical systems. ’

Homework problems are provided at the end of each chapter, and are crucial to
a thorough mastery of the subject. Instructive alternative treatments of formal devel-
opments in the text are often presented as problems, as well as detailed calculations
which are too lengthy for the text. One model system, particles in one dimension
interacting via a §—function two-body potential, is used extensively- to illustrate meth-
ods presented in the text. For this system, both exact solutions and a multitude of
common approximations can be worked out in detail analytically.

Finally, the organization of the book is as follows: We assume only an understand-
ing of elementary quantum mechanics and statistical mechanics, so we begin in Chapter
1 with a thorough, self-contained treatment of second quantization and coherent states.
Chapter 2 presents the general formalism of path int<grals, perturbation theory and
its resummations, and non-perturbative approximations in the formally simple case of
the grand canonical ensemble at finite temperature. Specialization to zero temperature
and the canonical ensemble is discussed in Chapter 3. Chapter 4 addresses the rolé’
of order parameters and broken symmetry in many-body theory and shows how mean
field theory embodies the essential physical content of the Landau theory of order
parameters and phase transitions. The next chapter develops the general properties
of Green's functions, and their application in describing fundamental excitations and
physical observables. The phenomenological description and microscopic foundation of
the Landau theory of Fermi liquids are presented in Chapter 6. Chapter 7 describes a
number of further developments of functional integral techniques, including alternative
functional integral representations, the treatment of quantum mean field theory and
tunneling decay, and the study of high orders of perturbation theory. The final chapter
presents stochastic methods.

As in all such efforts, we are indebted to many people for their invaluable assistance
in writing this book. This book was originally stimulated by David Pines and benefited
from the editorial guidance of Rick Mixter and Allan Wylde. Although it is impossible
to list all of the teachers, colleagues. and students whose insights have contributed
to this work, we would particularly like to acknowledge the contributions of R. Balian,
J. P. Blaizot, E. Brezin, C. De qumcts C. ltzykson. S. E. Koonin, S. Leibler, S. Levit,
G. Ripka, and R. Schaeffer.

Portions of earlier drafts of the manuscript were typeset in TEX by Meredith
Pollard, Karl Kowalski, and Dany Bunel. The majority of the TEX typesetting, as well
as the final editing, improving the layout and appearance of formulas, and preparation of
tables was performed by Roger L. Gilson, to whom the authors are particularly indebted
for his outstanding work. We also wish to acknowledge the excellent technical art work
by Don Souza and the work of the Addison-Wesley production department in providing
the final copy.

-

, .JOHN NEGELE
‘ C : HENR! ORLAND
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CHAPTER1 .

SECOND QUANTIZATION AND COHERENT STATES

The quantum mechanics of a single particle is usually formulated in terms of the
position operator £ and the momentum operator 5. All other operators of physical
interest may be expressed in terms of these operators, and a natural representation for
quantum mechanics, the coordinate representation, is defined in terms of eigenfunc-
tions of the position operator. In this chapter, an analogous formalism is developed
~ for systems composed of many identical particles. For these systems it is useful to
define operators which create or annihilate a particle in specified states. Operators of
physical interest may be expressed in terms of these creation and annihilation oper-
ators. in which case they are said to be expressed in “second quantized” form. The
eigenstates of the annihilation operators are coherent states. A natural representation
for the quantum mechanics of many-particle systems, the holomorphic representation,
is defined in terms of these coherent states. '

As a prelude to the formalism for many-particle systems, it is useful to begin by
reviewing some elementary aspects of quantum mechanics.

1.1 QUANTUM MECHANICS OF A SINGLE PARTICLE

Quantum mechanics describes the state of a particle by a state vector |#). which
belongs to a Hilbert space X. This Hilbert space X is the vector space of complex.
square integrable functions, defined in configuration space. Using Dirac notation, the
scalar product of vectors in X is:

$i9) = [ £r8 @00 - (19

Then by definition. a vector |¢) belongs to the Hilbert space X if the norm of |¢) is
finite:

$19)= [ @l <o - (1.2)

Of particular importance are the vectors [F) and |F). eigenvectors of the quantum
position operator ¥ and momentum operator P

IF) = FI7) (1.3)

a1t

plp) = BIp) - (1.4)

Although these vectors do not belong to ¥. because their norm is not finite, they span
the whole Hilbert space X. This is refiected by the foliowing closure relations:

| / SRy (7l = 1 (1.5)



2 SECOND QUANTIZATION AND COHERENT STATES

[ #imei=1 (1.6)

where 1 denotes the unit operator in ¥.

A state vector [F) represents a state in which the particle is localized at point 7,
and a state vector |p) represents a particle with a momentum p. The overlap of these
vectors is given by:

(FIFy = §C) (7~ 7) (1.7)
(Bl = 6V - 7) (1.8)
and ;
oA ,
o = () ¥ - (19)
The wave function of a particle in a state |@) is given in coordinate representation by:
¢(7) = (Flé) (1.10)

and represents the probability amplitude for finding the particle at point ¥.
In coordinate representation, the operators r and p p act as follows:

(7|79} = F(Flg) = F4(7) (1.11)
and
# = [ EnbinEe)
= [ Evitein pi9)
22 [ emie)
- ?;;—3-48(?) : (1.12)

Thus. in coordinate representation we may write:

F=7 (1.13)
and
~ h3d
s_h 1.14
=73 (1.14)

fi= L+V(r) . (1.15)



