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POSITRONIUM —ITS
FORMATION AND
INTERACTION WITH
SIMPLE SYSTEMS

J. W. HUMBERSTON

Department of Physics and ‘Astronomy
University College London
London WCIE 6BT, England

I. Introduction

During the past few years very significant developments have taken place
in the study of the interactions of positrons with atoms and molecules.
Progress has been particularly impressive on the experimental front where

the availability of more intense positron beams and improved detectors have .
made possible much more sophisticated experiments, and this in turn has .

stimulated further associated theoretical investigations. Recent experimen-
tal developments are reviewed by Griffith in anather chapter in this volume,
and a more comprehensive review by Charlton (1985) has also recently been
published.

One of the most interesting processes to occur in positron —atom collisions
is positronium formation, a simple example of a rearrangement collision in
which the incident positron combines with one of the electrons in the target
atom to produce a bound positron - electron system, positronium (Ps), and a
residual ion; thus

et+A4A—Ps+ A4+

Positronium formation cross sections have recently been measured directly
* (Charlton ez al., 1983; Fornari et al., 1983) over a wide range of incident
~ positron energies for several target systems, and a significant discrepancy is
found between the results of the two experiments which becomes increas-
ingly pronounced as the positron energy is raised. The possibility of resolving
this discrepancy provides an added incentive to study positronium forma-
tion theoretically, and it is this topic which will form the major part of this

1
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2 J. W. Humberston

article. We shall also discuss the interaction of positronium with simple
systems.

Other theoretical aspects of positron collisions in gases, and particularly
elastic scattering and annihilation, are treated in the review articles of Fraser
(1968), Bransden (1969), Massey (1971), Drachman (1972a), Massey et al.
(1974), Humberston (1979), and Ghosh et al. (1982).

II; Positronium Formation in
Positron— Atom Scattering

Positronium has the structure of a hydrogenic atom with a reduced mass
of half the electron mass. The ground-state energy is therefore — 6.8 eV and
the dipole polarizability is 36 a3. The two spin states are referred to as
parapositronium (S = 0) and orthopositronium (S = 1 #), and annihilation
is into two and three y rays respectively with lifetimes in the ground state of
1.251 X 107'%s and 1.418 X 1077 s (Gidley ef al., 1982). We shall neglect
spin-dependent forces and generally make no distinction between ortho- and
parapositronium. Consequently, of all the positronium formed in the colli-
sions of positrons with the target system, one-quarter is assumed to be
parapositronium and three-quarters orthopositronium.

If the ionization energy of the target atom is E;, the energy of the positron
at the threshold for ground-state positronium formation is

Ep,=E,—68¢eV

For atomic hydrogen and helium, the two target atoms with which we shall
be most concerned, the positronium formation thresholds are 6.803 and
17.6 eV, respectively. If the ionization potential is less than 6.8 €V, as is the
case for the alkali atoms, the positronium formation channel is open even at
zero positron energy; indeed the reaction is exothermic.

The energy interval between the positronium formation threshold and the
first excitation threshold of the target atom, E, (assuming E, > Ep,), is
referred to as the Ore gap. Within this energy gap positrons can either be
elastically scattered or form positronium. Direct annihilation of the positron
with one of the electrons in the target atom is also possible, but the cross
section for this process is very much smaller than that for either elastic
scattering or positronium formation. The Ore gaps for atomic hydrogen and
helium are 6.8-10.2 and 17.8-20.6 eV, respectively.

" Positronium formation can of course occur at energies beyond the upper
limit of the Ore gap, and it continues to make a significant contribution to
the total cross section at positron energies as high as 100 eV, but it then
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competes with many other inelastic processes and it becomes almost impos-
sible to treat the process in a very precise manner. Within the Ore gap only
two channels are open and very accurate results can be obtained, at least for
simple target atoms, using rather similar techniques to those employed to
calculate the essentially exact values of the scattering parameters for low-en-
ergy elastic scattering of positrons by hydrogen (Schwartz, 1961a; Humber-
ston and Wallace, 1972; Armstead, 1968; Register and Poe, 1975) and he-
lium (Humberston, 1973; Campeanu and Humberston, 1975; Humberston
and Campeanu, 1980).

Detailed theoretical investigations of p051tr0n1um formation in the Ore
gap have so far only been made for atomic hydrogen. No experimental
results are yet available for this system, although the development of much
more intense positron beams may make such an expenmcnt possible in the
near future. Nevertheless, the study of the process in the relatively simple
positron - hydrogen system is expected to lead to a better understanding of
positronium formation in more complex.systems.

A. POSITRON-HYDROGEN SCATTERING

Many different approximation methods have been used to calculate posi-
tronium formation cross sections, and we will not attempt to review them all
here. Instead we shall concentrate mainly on the more elaborate methods
which have yielded the most accurate results within the Ore gap. References
to other simpler methods are given in the review of Ghosh e al. (1982).

The Hamiltonian of the positron— hydrogen systermn can be written in
atomic units (using the nomenclature in Fig. 1 and assuming an infinitely
massive proton) as

H=—4V2 —4V2 4+ ——— — — ‘
| e M)
which is appropriate when considering the system as positron —hydrogen, or -
as . .

=—v2-v2 +-——;——-— @

which is appropriate when considering the system as positronium - proton.
For each partial wave the total wave function can be written in the two-

component form as
¥ .
¥,
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- P -
Fi1G. 1. The positron - hydrogen system.

where the first component, ¥, , represents positron - hydrogen elastic scat-
tering with positronium formation, and the second component, \¥,, repre-
sents positronium - proton elastic scattering with electron attachment to the
proton. The asymptotic forms of the two components are

¥y = Vi blry)Likry) — Kyymy(kry)
~= = Y (P X2K) Ppprs)Kyny(Kp)
pse0
¥, r:' Y,,o(ﬁ)(Zx)‘”d),,(rs)[j,(xp) = Kpmy(xp)]

RV Yio(Fy XK)'Pu(r)K ony (kry)

3

n

(i, j = 1, 2) are the elements of the X matrix (reaction matrix), and
d),,(r and @p(r;) are the wave functions of the hydrogen atom and the
positronium. The wave numbers of the posntron and positronium are kand
x, respectively, and energy conservation gives

2E=k2—1=4(x*— 1) @
The cross section for scattering between channels v and v’ is

21+ 1 K 2
Ry

I—i
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in units of na?, where subscripts 1 and 2 refer to the positron -hydrogen and
positronium - proton channels, respectively, and k, = k and k, = k. Thus,
the cross sections for positron - hydrogen elastic scattering and positronium
formation are o,; and a,,, respectively.

The most accurate results for the s-, p-, and d-wave contributions to the
positronium formation cross section are believed to be those obtained by
Humberston (1982, 1984) and Brown and Humberston (1984, 1985) using
~ the Kohn variational method with very elaborate trial functions containing
many variational parameters. Although it is not a bounded variational
method, and very anomalous results can sometimes be obtained (Schwartz,
196 1a), the method is simple to use and has yielded very accurate results for
the elastic scattering of positrons by hydrogen and helium atoms below the
positronium formation threshold.

For the present two-channel problem the stationary Kohn functional
takes the matrix form

Kiy Klzl___ K4~ '.z,_ (¥, L¥) (¥, LP) ©
K Kol Ky Kbl |8, £¥) (¥, L¥)

where £ = 2(H — E),and ¥, and W, are suitably chosen trial functions with
the asymptotic forms given by Eq. (3), namely

VY= Yio(P)dulr)k '”{jl(kf 1) — Kimy(kr){1 — exp(—An)P)
— Y,o(0)elrsX2K) 2K 1y (xp)[ 1 — exp(—pup)l
+ Y, olFy,F2) 2 c;exp{—(ar, + fry + yry)lrkriry
i

)
¥, = Y,o(5 )ml(rsN2K) (i (xp) — Ksomy(xp)[1 — exp(—up)}9)

= Yo )@u(ra)k ' 2K ion(kr))[1 — exp(— Ar,)P
+ Y olFy,F2) z d; expl—(ar, + pry + yry)irkriry
i

For each value of / there are (! + 1) different angular functions Yo7y ,Fy) with
the parity of / (Schwartz, 1961b), and associated with each such functionisa
summation over the index i in Eq. (7), which includes all terms with k;, 4
l; + m; < w, wherek;, I, m;,and w are non-negative integers. Further details
of the method of calculation are given by Humberston (1982).

‘Very accurate results can be obtained if sufficient short-range correlation
terms are included, but in order to establish the precision of a particular
result it is necessary to investigate the convergence with respect to systematic
improvements in the trial function. Increasing the value of w provides such a
systematic improvement, and the numbers of terms generated by the above
schemeforw=1,2, ..., 7 are 4, 10, 20, 35, 56, 84, and 120, respectively.
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Although, as mentioned earlier, the Kohn variational method is not a
bounded method, it is almost invariably found in practice to give lower
bounds on the diagonal elements of the K matrix. As the trial function is
improved by increasing , these matrix elements increase monotonically
and converge to the (presumably) exact values. Indeed the convergence is
often sufficiently smooth that extrapolation to infinite w is possible, giving
even more accurate results (Humberston, 1984). No such bound principle
applies to the off-diagonal K-matrix element K,,(= K,,) and accordingly the
variation with @ can be somewhat erratic, although for sufficiently large
values of w the results do seem to converge.

We will now consider the results obtained by the above procedure for each
partial wave in turn.

1. s Wave

The variations of the elastic scattering and positronium formation cross
sections with w at four positron energies within the Ore gap are shown in
Figs. 2 and 3. The lower and upper boundaries of the Ore gap correspond to
k=1/y2=0.7071a;" and k = V3/4 = 0.8660ag", respectively. The con-

L
0.4
0.12 |-
L .
~ 010 |- «
e § 0.85
E o008 | .
5 - 0.80
Py 0.06 +—
004 0.75
- : 0.7
0.02 |-
0 ] 1 1 1 ] I 1
0 1 2 3 L 5 6

FiG. 2. Variation of the s-wave elastic cross section with .
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F1G. 3. Variation of the s-wave positronium formation cross section with w.

vergence of the elastic scattering cross sections is particularly impressive, and
even the positronium formation cross sections have probably converged to
within 10% of their exact values. Details of the convergence of the individual
K-matrix elements are given by Humberston (1984).

The energy dependence of the s-wave contribution to the positronium
formation cross section is plotted in Fig. 4. A conspicuous feature, which has
been examined in detail by Humberston (1982), is the initial very rapid rise
from zero at the threshold, but the magnitude of the cross section remains
very small relative to the elastic cross section and, as we shall see, also to
higher partial-wave contributions to the positronium formation cross sec-
tion.

Also plotted in Fig. 4 are the results from other calculations using a variety
of approximation methods. The extraordinarily wide range of values, span-
ning several orders of magnitude, illustrates the sensitive dependence of the
results on the quality of the trial function. Even some of the other elaborate
variational calculations, such as those of Stein and Sternlicht (1972), Chan
and Fraser (1973), and Winick and Reinhardt (1978), give significantly
different results.

Stein and Sternlicht also used the Kohn variational method with a similar,
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0.006 —

© 0.005 —

0.004 |—

2
g, (®ag)

0.003 —

0.002

0.001 —

0.5 0.6 07
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F1G. 4. Results for the s-wave positronium formation cross section in positron - hydrogen
scattering: (A) Humberston (1982); (B) Stein and Sternlicht (1972); (C) Chan and Fraser (1973);
" (D) Winick and Reinhardt X 10~! (1978); (E) Fels and Mittleman (1967); (F) Dirks and Hahn
(1971); (G) Wakid and La Bahn X 10 (1972); (H) Bransden and Jundi X 1072 (1967); (I)
coupled static approximation; (J) Born approximation X 10-2,

but slightly less flexible, trial function to that of Humberston. Up to 84
correlation terms (w = 6) were included and very satisfactory agreement
with the results of Humberston was obtained except at energies close to the
positronium formation threshold. Their values of the diagonal elements of
the K matrix then fall slightly below those of Humberston, strongly suggest-
ing that their results are less accurate.

Chan and Fraser used a method based on the formulation of the coupled
static approximation with the addition of several short-range correlation
terms, ¢;. The method amounts to using the Kohn variational method with

4
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trial functions of the form , .
¥, = Fy(r)du(r) + G(p)Pes(rs) +,2 P
i

¥, = Fy(r)ou(r2) + G p)pers) + 3, dib
i

and allowing the variational method to determine the forms of the functions
F(r,) and G{(p) (i = 1, 2). These emerge as numerical solutions to a set of
coupled integrodifferential equations with boundary conditions at infinity
given by Eq. (3). Although the method is more complicated than the purely
algebraic Kohn method, it has the advantage of yielding rigorous lower
bounds on the diagonal elements and eigenvalues of the K matrix provided
the total energy of the system is below the lowest eigenvalue of the operator
QHQ, where Q is the closed channel projection operator (Hahn, 1966);

°=(l T l—ltb(:.)(éal)

H H
p H™ (H H )

The eigenvalues of QHQ are related to the positions of Feshbach resonances
and such resonances are known to exist just below the n = 2 excitation
threshold of the hydrogen atom (Doolen et al., 1978), although none has yet
been found in a direct calculation of the type being described here. The three
resonances found by Seiler et al. (1971) have been shown to be artifacts of
their method of calculation, which neglected the open positronium channel.
When this channel was included in the trial function the resonances disap-
peared (Drachman, 1975).

Only 26 short-range correlation terms of a rather mtncted form were used
by Chan and Fraser, and, not surprisingly, the values of their diagonat
K-matrix elements-and eigenphases are somewhat less positive than those of
Humberston. However, their results are significantly better than those ob-
tained from earlier rigorous lower-bound calculations such as those of Dirks

@)

and

i and Hahn (1971) and the coupled static approximation.

- A somewhat less conventional method of calculation has been used by
Winick and Reinhardt (1978). They calculated the various partial-wave
elastic scattering amplitudes, ¢,, from the off-shell elastic scattering 7" matrix

and hence the elastic scattering across sections

4
= F(21 + Dy )
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Then, using the optical theorem, they also obtained the partial-wave total
Cross sections

a{°,=%(21+1)1m L (10)

The difference between g, and g is the cross section due to all inelastic
processes, and within the Qre gap the only such process is positronium
formation.

The matrix representation of the total Hamiltonian that is required for the
calculation of the T matrix was generated using basis functions of the form,
using the same nomenclature as in Fig. 1,

b, = CXD[—(QH + ﬂrz)]”f"lzlrg"YI.J,'L(fl ,F2) (11)

Again all functions with k; -+ [, + m; < w were included with the exception
of a few terms when w = 7, so that the maximum number of functions was
105. Given the similarity of these basis functions in form and number to
those used by Humberston, one might have expected the two sets of results to

0.8} 0.7
0.75
0.7 f—
0.6 0.8
———x 0.85
~o 0.5
]
2
g 0.4}~
0.3}
0.2
0.1+
0 | | i | 1 | i
0 1 2 3 4 5 6 7

B L
FIG. 5. Variation of the p-wave elastic scattering cross section with w.
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be in good agreement. Thisis indeed so for the elastic scattering cross section,
but the positronium formation cross section is approximately five times
larger than Humberston’s. The discrépancy is most probably due to the
smallness of the positronium formation cross section in relation to the elastic
cross section. The elastic and total cross sections are therefore very similar in
magnitude, and, as both cross sections are slightly in error, the subtraction
procedure is very likely to introduce a large percentage error into the posi-
tronium formation cross section.

2. p Wave

The convergence of the p-wave elastic scattering and positronium forma-
tion cross sections with respect to w, as obtained by Brown and Humberston,
is shown in Figs. 5 and 6. These results are slightly different from those
already published by Brown and Humberston (1984) and correspond to an
improved choice of values of the nonlinear parameters in the trial function
that gives much better convergence to well within 10% of the exact values.
Except at energies very close to the threshold, the p-wave contribution to the

08
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FiG. 6. Variation of the p-wave positronium formation cross section with w.



