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PREFACE

Knowledge of the organization of the cytoplasm of eukaryotic cells has ex-
panded greatly during the past decade. The early view of the cytoplasm as a
structureless ‘‘soup’’ has given way to our present understanding of it as being
exquisitely ordered. This order is conferred by a three-dimensional network of
fibrous structures, which include microtubules, microfilaments, and intermediate
filaments, and the fiber-associated molecules that mediate the interactions and
functions of the fibrous elements with each other and with cytoplasmic organel-
les. The three-dimensional network of fibrous structures has come to be known
as the cytoskeleton, though the dynamic nature of the network is not captured by
the term.

Early research on the cytoskeleton focused on identification of the major
constituents of the cytoskeleton and their characterization, in terms of both their
organization in cells and tissues and their biochemical properties. More recently,
our attention has been turning strongly toward understanding the functions of
cytoskeletal elements in living cells, and has focused on investigation of ‘‘less
visible’’ cytoskeletal components (which are considered to interact functionally
with the surfaces of the major types of filaments) and on the development of
methods and model systems for investigating the functional interactions of cyto-
skeletal components with one another and with other cell components.

This volume consists of 18 chapters that describe cell systems and in vitro
model systems presently or potentially valuable for the elucidation of the
functions of the cytoskeleton or its components in living cells. The methods
involved have been described in considerable detail and are often accompanied
by a section of overview perspectives that should aid investigators new to this
research area. The previous volume of this publication (Volume 24, The Cyto-
skeleton, Part A) consists of 24 chapters concerned with the isolation and charac-
terization of cytoskeletal components, and with the development of research
tools to enable the study of cytoskeletal components in living cells and in vitro
models.

I wish to thank all of the authors who have so generously contributed chapters
to this volume, and I apologize to readers who are searching for a technique that
has not been included. I also wish to thank Susan Overton for her substantial help
in preparing the Index.

LESLIE WILSON
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Chapter 1

Fluorescent Analog Cytochemistry
of Contractile Proteins

YU-LI WANG, J. M. HEIPLE, AnND D. LANSING TAYLOR

Cell and Developmental Biology
Harvard University
Cambridge, Massachusetts
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III. Conclusion and Prospectus . . . . . . .
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I. Introduction

A new approach to investigate the distribution and interaction of cytoskeletal
and contractile proteins was introduced in 1978 (Taylor and Wang, 1978) by
combining the techniques of microinjection, fluorescence spectroscopy, and
image intensification. The general approach, which we now call fluorescent
analog cytochemistry (FAC; previously referred to as molecular cytochemistry),
has been defined as the incorporation of functional fluorescent analogs of cellular
components into or onto living cells.

Fluorescent analog cytochemistry is specifically designed to follow the distri-
bution and interaction of molecular components in single living cells. However,
as with any technique, errors in experimental design, execution, or interpretation
can effectively limit this potentially powerful approach. We have discussed some
of the advantages and practical considerations of fluorescent analog cytochemis-

1
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2 YU-LI WANG ET AL.

try in our early papers. This chapter is a set of guidelines and procedures for the
optimal utilization of the technique. We will emphasize the most critical factors
and point out common pitfalls.

II. Procedures

The technique involves four major steps: (1) purification and fluorescent label-
ing of cellular components; (2) biochemical and spectroscopic characterization in
vitro; (3) incorporation into or onto living cells; and (4) image recording and
interpretation. The following discussion will be limited to proteinaceous, cyto-
plasmic components using our results with S-iodoacetamidofluorescein-labeled
actin (5-AF-actin) as illustrations (Taylor and Wang, 1978; Wang and Taylor,
1979, 1980; Taylor et al., 1980). A variety of labeled proteins have been incor-
porated into various cell types since we first introduced this technique
(Feramisco, 1979; Feramisco and Blose, 1980; Kreis et al., 1979; Wehland and
Weber, 1980).

A. Purification and Fluorescent Labeling of Cellular Components

Fluorescent labeling of proteins in general has been discussed in several previ-
ous reviews (Dandliker and Portmann, 1971; Fairclough and Cantor, 1978;
Stryer, 1978). The fluorescent conjugate (hereafter referred to as the ‘‘fluores-
cent analog’’ of a cellular component) can be prepared either by (a) labeling the
purified protein subunits or by (b) labeling a supramolecular complex that con-
tains the target protein, followed by fractionation of the labeled conjugates. This
latter cpproach has the advantage that active sites for structure formation are
more likely to be protected from modification.

The fluorescent-labeling reagents should be chosen based on several criteria.
The fluorophore should absorb in the visible range, optimally 450-650 nm in
wavelength, so that radiation damage to living cells and interference from auto-
fluorescence can be minimized. Furthermore, the fluorophore should be stable
under recording conditions. Optimally, fluorophores with high quantum yields
and high extinction coefficients should be chosen, in order to maximize the
signal from single cells. The reactive group should create a covalent bond that is
stable inside the cell, without affecting the biochemical functions of the protein.
The optimal reactive group will be determined to a large extent by the properties
of the specific protein. For some well-characterized proteins such as actin, it is
possible to choose site-specific reagents directed toward an apparently nonessen-
tial site (e.g., sulfhydryl reagents react predominantly with cys-373 in F-actin;
Elzinga and Collins, 1975; Wang and Taylor, 1980). If nonspecific reagents are
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used, it is important either to isolate a functional, labeled fraction after reaction
or to protect the active sites furing the reaction.

To date, several fluorescent reagents have been used for fluorescent analog
cytochemistry. 5-lodoacetamidofluorescein, rhodamine isothiocyanate (RITC),
and dichlorotriazinyl aminofluorescein (DTAF) (Wang and Taylor, 1980;
Feramisco, 1979; Keith er al., 1980). Many other fluorescent reagents such as
7-chloro-4-nitrobenzo-2-oxa diazole (NBD-Cl), eosin isothiocyanate, and
cyanine dyes fit into the above criteria and remain to be explored (Ghosh and
Whitehouse, 1968; Cherry et al., 1976; Waggoner, 1979). Of particular interest
is the ‘‘piggyback’’ labeling techniques using Rhod-a-lactalbumin introduced
by Shechter er al. (1978). This technique has great potential for preparing
fluorescent analogs of minor cellular components and yielding high fluorescence
intensity from a very small number of labeled molecules.

B. Biochemical and Spectroscopic Characterization in Vitro

It is very important to characterize various properties of the fluorescent analog
in vitro before microinjection into living cells. These assays not only minimize
the possibility of artifacts after microinjection, but also provide necessary infor-
mation for interpreting results from injected cells.

The solution of the fluorescent analog should be free of unbound or noncova-
lently associated fluorophores; otherwise, a confusing background fluorescence
will be observed in the injected cell, and the results will be impossible to inter-
pret. The test can be performed by using either a desalting column preequili-
brated with SDS or SDS-gel electrophoresis. A single fluorescent band comigrat-
ing with the protein should be detected.

The average number of fluorophores per protein molecule (F/P ratio) must be
determined in order to allow proper evaluation of biochemical assays. The con-
centration of fluorophore can be determined most conveniently by light adsorp-
tion (Dandliker and Portmann, 1971). However, it is necessary first to determine
the extinction coefficient of the bound fluorophore. A simple method to obtain
approximate values has been described by Hartig et al. (1977). The method
assumes that the extinction coefficient of the fluorophore bound to unfolded
protein (in 7.5 M urea) is equal to that of the original fluorescent reagent in the
same solvent. For those fluorescent reagents that undergo significant changes in
electron distribution on reaction, model compounds prepared by reaction with
small molecules (i.e., amino acids) should be used.

If a low F/P ratio is obtained, it is necessary to isolate the labeled fraction to
obtain a F/P = 0.5, in order to allow unambiguous evaluation of biochemical
assays. For reactions that alter the net charge of proteins, the fractionation can be
carried out by ion-exchange chromatography (Wang and Taylor, 1980).
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FiG. 1. Peak fluorescence intensities of 5-AF-actin are affected by both pH and the state of actin
assembly. The graph indicates that the detection of G-actin (open circles) in the cell will be slightly
favored over that of F-actin (solid circles). The binding of HMM (triangles) has a significant effect
under saturation conditions, but given the low myosin/actin ratio in nonmuscle cells, the net effect
inside cells should be limited. (From Wang and Taylor, 1980.)

Detailed biochemical assays should be carried out to assess the functional
activities of the analog. For 5-AF-actin, the assays include viscosity measure-
ment, activation of heavy meromyosin Mg?+ ATPase, and formation of Mg?*
paracrystals. The results are compared to unlabeled controls and are evaluated in
relation to the percentage of protein molecules that are labeled.

Along with assays with purified proteins, additional assays can be performed
using crude cell-free extracts. For example, motile extracts of Dictyostelium
discoideum have been used to test the incorporation of 5-AF-actin into contract-
ing fibrils and pellets (Taylor and Wang, 1978; Wang and Taylor, 1980). The
extract system allows assays to be performed at a level between living cells and
purified proteins and could cover functions not well characterized with purified
proteins.

Spectroscopic characterization is very important for the interpretation of
fluorescence signals from injected cells. It is necessary to determine whether the
fluorescence intensity of spectra are affected by solvent parameters, such as pH
and free Ca2* ion concentration, which could vary in different regions of the cell
or during different physiological states of the cell. In addition, the effect of
conformational change or structural transformation on fluorescence properties
should be investigated, since a particular conformation or structure could be
favored at certain sites of the cell and affect the pattern of fluorescence distribu-
tion (Fig. 1).
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C. Incorporation into Living Cells

The optimal target cell is determined to a large extent by the questions under
investigation. For example, cultured mammalian cells are particularly amenable
to whole-cell image analysis using tv-image intensifiers and computers, because
of the short pathlength and distinct cytoskeletal structures. On the other hand,
large cells, such as sea urchin eggs, giant amoebas, and large cultured cells (e.g.,
myotubes and newt lung fibroblasts), can be measured with large measuring spot
sizes and yield strong fluorescence signals, and thus are more readily applicable
to microspectrofluorimetric measurements.

A number of microinjection techniques, including direct-pressure microinjec-
tion, red cell ghost fusion, liposome fusion, and cell permeation, have recently
been introduced or refined to deliver macromolecules into living cells (for a
review, see Taylor and Wang, 1980). Two important precautions should be
followed when applying these techniques.

First, the solvent condition should be compatible with both the target cell and
the fluorescent analog. The cytoplasm should be kept from exposure to harmful
conditions such as high pH (>7.2) or high free Ca?* ion concentration (>107°M).
In addition, appropriate solvent conditions should be chosen to stabilize the
analog. For example, G-actin should be kept in the presence of nucleotides and
divalent cations. Conditions that favor actin polymerization, such as high
ionic strength (>10 mM) and high Mg?* ion concentration (>0.2 mM), should
be avoided.

Another consideration is the amount of the fluorescent analog to microinject.
The final concentration of the analog in the cell should be sufficiently high to
yield detectable signals, but low enough to minimize disturbance of the cell. For
proteins with enzymatic activities, this precaution is especially important. We
have set an upper limit at ~10% of the concentration of the corresponding
endogenous component. Unfortunately, for most microinjection techniques (ex-
cept direct-pressure microinjection; see Kiehart, Chapter 2, this volume), reliable
ways to control the volume of delivery have yet to be developed.

An important question is whether the analog can actually be utilized by the cell
after microinjection into the cytoplasm. The incorporation of analogs into cellu-
lar structures could be affected by such factors as the rate of turnover, the
accessibility of incorporation sites, and the mechanism of structure formation.
Using mass-incorporation methods such as ghost fusion, it should be possible to
apply biochemical techniques to study the turnover of the injected analog (Rech-
steiner, 1979). The question of incorporation can be studied by using model
systems in which the behavior of the component has been characterized in detail.
For example, the single-cell model of Chaos carolinensis has been used to test
the incorporation of 5-AF-actin (Taylor and Wang, 1978; Taylor et al., 1980). A
significant fraction of 5-AF-actin is found to remain associated with the ghost
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FiG. 2. Phalloidin is injected into a Chaos carolinensis that contains 5-AF-actin. The fluorescent
fibrils contract irreversibly to one end of the cell and recruit most of the 5-AF-actin. Image recorded
using a RCA SIT coupled to a NEC videotape recorder.

and membrane-free cytoplasm on rupturing a preinjected cell in a stabilizing
solution. Furthermore, 5-AF-actin becomes incorporated into cytoplasmic fibrils
when a cell with 5-AF-actin is postinjected with phalloidin (Fig. 2). These
observations are consistent with the known characteristics of endogenous actin in
amoebas (Taylor et al., 1976; Stockem et al., 1978). The use of model systems
indicates whether the analog can be utilized by the cell under specified condi-
tions, but does not prove that the analog can be incorporated into all possible cell
structures or under all conditions. When interpretating results from injected cells,
the possibility of ‘‘false negatives’’ should always be considered.

D. Image Recording and Interpretation

The fluorescence image of injected cells can be recorded using photography,
and high-quality records can be obtained from nonmotile processes (under condi-



