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PREFACE

Group theoretical methods in atomic and molecular physics were employed
very early in the history of quantum mecnanics, notably by H. Weyi, E. P.
Wigner, and H. Bethe, although on the whole widespread acceptance was not
achieved for some thirty years. An important impetus toward a renewed interest
in group theory on the part of physicists was the work of G. Racah who intro-
duced the formalism of irreducible tensor operators and demonstrated their utility
in the evaulation of atomic matrix elements. Extensions to molecular systems
followed within a relatively short time. It is the purpose of this book to discuss
the basic properties of atoms and molecules, taking full advantage of these power-
ful methods. _

Part 1 contains the essential mathematics pertaining to angular mometum
properties, finite and continuous rotation groups, tensor operators, the
Wigner- Eckart theorem, vector fields, and vector spherical harmonics. Part 11
provides the quantum mechanical background on specialized topics, it being
assumed that the student has had at least an undergraduate .course in quantum
mechanics. Included are symmetry considerations, second quantization, density
matrices, and several types of time-dependent and time-independent approxima-
tion methods. Discussion of atomic structure begins in Part I1I. Starting with the
Dirac equation, its nonrelativistic approximation provides the basis for the deri-
vation of the Hamiltonians for all important interactions, e.g., spin—orbit, exter-
nal fields, hyperfine, etc. Multielectron atoms are discussed in Part [V, which
treats multiplet theory and the Hartree— Fock formulation. Electromagnetic radi-
ation fields and their interactions with atoms in first and higher orders are treated
in Part V, which also includes topics of relevance 1o spectroscopy. Finally, Part
V1 is devoted to molecules and complexes, including such topics as the Born—
Oppenheimer approximation, molecular orbitals, the self-consistent field
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xvi PREFACE

method. clectronic states, vibrational and rotational states. molecular spectra,
and ligand field theory.

The quantum mechanics of atoms and molecules, once the exclusive domain
of physicists, has in recent years proliferated into other fields, primarily chemis-
try and several branches of engineering. In recognition of this wider interest, a
full yvear graduate course in atomic and molecular physics has been taught in the
Department ot Applied Physics at Stanford University. Attendees consisted of
students working in diverse fields such as spectroscopy, magnetic resonance,
Mdassbauer resonance, quantum electronics, solid state electronics, astrophysics,
and biological physics. The present volume is an outgrowth of this course.
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PART |

Mathematical Background

CHAPTER 1

ANGULAR MOMENTUM

1.1 Orbital Angular Momentum

The orbital angular momentum operator L is defined by
_ ) ‘ :
L=z(rxp) (1.1-D

where r is a vector whose components r; are x, y, z (or x,, X,,X;) and
p= —ihV (1.1-2)

is the linear momentum operator; the rectangular components of the
gradient operator V are ¢/éx, ("’/(’y, é/cz. Expanding (1.1-1),

——(' zp)= —i < ¢
TR = YR T

¢ ¢ .
i| sing — +cot0cosq) i (1.1-3a)

a0

1 ¢ n
L, —z(_p, —xp)= —I(Z(—;— xE)

i{ —cos ¢ + cotfsin ‘
= J| — — -,

1 { & ¢
L. = xpy—yp) = —t(x 5 (—t)

= — - : (L.1-3¢)

{1.1-3

>
) g



2 1. ANGULAR MOMENTUM

R DARS B pedibrufie i) 8 the polar and azimuth angles, respectively.

The operators L,,L,, and L, are Hermitian, i.e.,
Li' = Li (l= x,,VaZ),

(1.1-4)

and, as functions of the coordinates, L,,L,, and L, are pure imaginary

operators.
It will often be convenient to use spherical components of L these are
defined as
Ly f( «+iL) = —-———e“"( -pﬁtb{ﬂiz%),”ﬁ

00

L_, =~I—(Lx~ iL,)) = —Le"v’ (~—— icotf — 0
op

NG

LO - L...

NE

The inverse relatlons are
Lx=—-(L+1— 1) L

G fkﬁ

(L+1+L )

(1.1-5)

LS

(1.16)

In contrast to the rectangular components of L, L+l and L_, are not
Hermltlémssmoe S R N Y T PR NP TS TR 10 £ 5 E I T S T O S S S S T

0

¥ LY, = —~L_{& &% =—-L,,.

(1.1-7)

~/Fhe coxnponents of r'and psansfycertam commutation’ relauons*

SR T S S S FH AL TS

[r,,p,] th&u, ;
[r-i, rjf]‘ =[p,p]=0

[r,,pz] 2ihp;, - _
[p‘,y 2] 3 ‘ODJ . -.,4.»51

T 8a)
(1.1-8b)
(1.1-8¢)

(1L1-8d)

in which r,, rp=Xx y,z, p,,p, , ,pnpy,p_,, and p? =px§+ py + p,%. The

definition of L (1.1-1) together-with (1.1-8) imply that

[Lx’ Ly] = {Lz‘a o [,l(’y)(Lz , xs e [{‘z: Lx] =L

These may be written in any of the compact forms:
LeLeh, koo,
LxL=IL,
[Li,L;] = ieg Ly,

1.1-9) -

(1.1-10a)
(1.1-10b)
(1.1-10c)



12 SPHERICAL HARMONICS AND RELATED FUNCTIONS 3

in which ¢, is the antisymmetric unit tensor of rank 3 defined by

+1, i, j, k in cyclic order,
g =141, i, j, k not in cyclic order, (1.1-1 1),
0, two indices alike.

The three statements (1.1-10a)—(1.1-10c) are equivalent in all respects.
Additional commutator relations among the components of L, r, and p are

[Li,r;] = iggr,, {1.1-12a)
[Li.p;]1 = ieipp. (1.1-12b)
[L0~Ltl] = iLi’l’ [L+1,L_l] = ""Lo. (11‘13)

Another important operator is L?. also known as the total orbital angular
momentum operator. It may be expressed in various equivalent forms:

L*=L*+L*+L.>?
= —[(,%~+ cot();o+ (1 + cot? ) }‘(;J
T e/, ¢ S .
= _l:gl_}?)m(suwﬁ)%-gnz—o&pg] . (LI-14
=-L.,L ,+L2-L_,L,,
=Y (=1PLL., (g=1.0.—1)
q

Employing relations (1.1-13) we also have
LZ = _2L+]L_1 + LO(LO - 1) = _'2L_1L+1 + Lo(Lo + ])Q (11-15)

L? commutes with all components of L, ie., ‘
[L.L,]=0 (1.1-16)

where L, refers to either rectangular components (L..L,.L.) or spherical
components (L, ,,L,.L_,)of L.

1.2 Spherical Harmonics and Related Functions

The spherical harmonics Y,,(0, ¢) are defined by
e LD Ty |

Y..(6.0) = —Qymrim 7 27T pimj im .
m(0.0) = /(= 1) \/ an N+, P -(cos(;?)e e (1:2-1)




4

. ANGULAR MOMENTUM

TABLE 1.1

Spherical Harmonics®

I m At z) ¥, d0. @)
0 o \/' | T
4
1 0 ' e —%-z \/—cos@ .
4n
1 +1 ;\/}_7(\,4.,",;‘ F [ sing e*®
- 8n 8n
5 1
2 0 \/ \[(32 -r? (—\/:(ZCOSZB—I)
. N 4 :
— {5 43 .
2 +1 \//‘/-z(x +:y) F /—\[cos@smﬂe*"
4N 2
: 5 [3 53 .
2 +2 - - + ine -  Qin? 1 2ip
+ 47'\/;()(_1}) 4n\/;sm fe
7 1 ' .
3 0 / \/:Z(SZ -3r} I—\/~(2 cos*0 — 3 cos fsin? )
4n V4
3 +1 ?\[—-— (x+iy)(5z —r’) f \/—(4cos dsin 0 — sin® )eti®
13 A [T 15 :
3 +2 \/ z(x +D’)2 Z;\/:;:cosesinZGe*Z"
3 +3 / / (x+1y)3 ¥ /l\/i_sirﬁﬂe“*"
., § (1 '
4 0 — - (852% — 302212 4 3r%) e 4——(35 005* 0 < 30 cos2 + 3)
4n \ 64
_ 19
4 +1 ¥ / (x + iy} 723 ~ 3zr2) / / sm 0(7 cos 0 - 3 cos B)e*"
4 +2 ,—» /——(x + iA1=y . ! , sin20(7 cos‘B« l)e“‘ﬂ
4n \ 32 .
: ‘ 9 [35 .
4 +3 F /— ’—-z(xiiy):’ / / sm’ﬂcosﬂe“"’
: 4V 16
9 PR 385 feT
4 4 - +iy) / ’__ urw
t . \/;n (" 1}’) ) 128 sm y
4 In spectroscopic notation, functlons that are propomonal to Y,,,, wnthl = 0 1,2,3,... are

calleds, py d, f, fnncnons

R LR AT




1.2 SPHERICAL HARMONICS AND RELATED FUNCTIONS 5

with
A=0.1,2...., (1.2-2a)

m=Il1-1...,-l (1.2-2b) .

and P™(cos () an associated Legendre polynomial. The phase convection
in (1.2-1) is not universal: the one adopted here is known as the Condon
Shortley convention. Some of the commonly used spherical harmonics are
listed in Table 1.1: among their propertics are:

Yoo = (= Y R ). (1.2-3a)

Yot — 01 + ) = (= VY00, 0. (1.2-3by

The change from (0. p) to (m — #.7 + @) corresponds Lo an inversion. that is.
a change from (x, ».2) o (—x. —y. —2). From (1.2-3b) it is scen that Yy, )
changes sign undcr inversion when [ is an odd integer: when /s ceven. there
is no change in sign. In the former case. ¥,,,(0. ) is said (o have odd pariry
and in the latter, even parity. The quantity (- 1Y. which is equal 1o +1 for/
even and — 1 for / odd is called the pariry factor.

When § =0,

0 for m#0,

Yu0.0)=< |2 1.2-4
m(0.0) \/ 41 for m=0. ( '
4n

The spherical harmonics satisfy an orthogonality relation
;[y;:,w.mn.;,,,w. @)sin 0.d0 dg = f Y 20,0 (0. QIR = 3y S (1.2-5)
in which dQ = sin 0 d0 dy is an element of solid angle. An arbitrary function

1(0, @), satisfying the usual criteria for expansion in terms of an orthonormal
set, may be expanded in terms of spherical harmonics as

[ ») { .

f0.9)=3 ¥ autal0e) (1.2-6a)
1=0 m= —|

Uim = fY,‘..(ﬂ-rp)f 0, p)dQ2. (1.2-6b)

It is often desirable to work with real functions constructed as linear
combinations of the (complex) spherical harmonics. Several examples are
listed in Table 1.2 and are shown in the form of polar diagrams in Fig. 1.1.

Orbital angular momentum operators and spherical harmonics are inti-
mately related. This may be seen from the standpoint of a central foree




