# The Theory of Matrices Second Edition with Applications Peter Lancaster Miron Tismenersky # The Theory of Matrices Second Edition with Applications ### Peter Lancaster Department of Mathematics University of Calgary Calgary, Alberta, Canada ## Miron Tismenetsky IBM Scientific Center Technion City Haifa, Israel #### **ACADEMIC PRESS** (Harcourt Brace Jovanovich, Publishers) Orlando San Diego New York London Toronto Montreal Sydney Tokyo COPYRIGHT © 1985, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL. INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. Orlando, Florida 32887 United Kingdom Edition published by ACADEMIC PRESS INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX #### Library of Congress Cataloging in Publication Data Lancaster, Peter, Date The theory of matrices. (Computer science and applied mathematics) Includes index. I. Matrices. I. Tismenetsky, M. (Miron) II. Title. III. Series. QA188.136 1984 512.9'434 83-15775 ISBN 0-12-435560-9 (alk. paper) PRINTED IN THE UNITED STATES OF AMERICA 85 86 87 88 9 8 7 6 5 4 3 2 I ## **Preface** In this book the authors try to bridge the gap between the treatments of matrix theory and linear algebra to be found in current textbooks and the mastery of these topics required to use and apply our subject matter in several important areas of application, as well as in mathematics itself. At the same time we present a treatment that is as self-contained as is reasonably possible, beginning with the most fundamental ideas and definitions. In order to accomplish this double purpose, the first few chapters include a complete treatment of material to be found in standard courses on matrices and linear algebra. This part includes development of a computational algebraic development (in the spirit of the first edition) and also development of the abstract methods of finite-dimensional linear spaces. Indeed, a balance is maintained through the book between the two powerful techniques of matrix algebra and the theory of linear spaces and transformations. The later chapters of the book are devoted to the development of material that is widely useful in a great variety of applications. Much of this has become a part of the language and methodology commonly used in modern science and engineering. This material includes variational methods, perturbation theory, generalized inverses, stability theory, and so on, and has innumerable applications in engineering, physics, economics, and statistics, to mention a few. Beginning in Chapter 4 a few areas of application are developed in some detail. First and foremost we refer to the solution of constant-coefficient systems of differential and difference equations. There are also careful developments of the first steps in the theory of vibrating systems, Markov processes, and systems theory, for example. The book will be useful for readers in two broad categories. One consists of those interested in a thorough reference work on matrices and linear algebra for use in their scientific work, whether in diverse applications or in mathematics xiv Preface itself. The other category consists of undergraduate or graduate students in a variety of possible programs where this subject matter is required. For example, foundations for courses offered in mathematics, computer science, or engineering programs may be found here. We address the latter audience in more detail. The first seven chapters are essentially self-contained and require no formal prerequisites beyond college algebra. However, experience suggests that this material is most appropriately used as a second course in matrices or linear algebra at the sophomore or a more senior level. There are possibilities for several different courses depending on specific needs and specializations. In general, it would not be necessary to work systematically through the first two chapters. They serve to establish notation, terminology, and elementary results, as well as some deeper results concerning determinants, which can be developed or quoted when required. Indeed, the first two chapters are written almost as compendia of primitive definitions, results, and exercises. Material for a traditional course in linear algebra, but with more emphasis on matrices, is then contained in Chapters 3–6, with the possibility of replacing Chapter 6 by Chapter 7 for a more algebraic development of the Jordan normal form including the theory of elementary divisors. More advanced courses can be based on selected material from subsequent chapters. The logical connections between these chapters are indicated below to assist in the process of course design. It is assumed that in order to absorb any of these chapters the reader has a reasonable grasp of the first seven, as well as some knowledge of calculus. In this sketch the stronger connections are denoted by heavier lines. Prerequisite structure by chapters There are many exercises and examples throughout the book. These range from computational exercises to assist the reader in fixing ideas, to extensions of the theory not developed in the text. In some cases complete solutions are given, Preface XV and in others hints for solution are provided. These are seen as an integral part of the book and the serious reader is expected to absorb the information in them as well as that in the text. In comparison with the 1969 edition of "The Theory of Matrices" by the first author, this volume is more comprehensive. First, the treatment of material in the first seven chapters (four chapters in the 1969 edition) is completely rewritten and includes a more thorough development of the theory of linear spaces and transformations, as well as the theory of determinants. Chapters 8-11 and 15 (on variational methods, functions of matrices, norms, perturbation theory, and nonnegative matrices) retain the character and form of chapters of the first edition, with improvements in exposition and some additional material. Chapters 12-14 are essentially extra material and include some quite recent ideas and developments in the theory of matrices. A treatment of linear equations in matrices and generalized inverses that is sufficiently detailed for most applications is the subject of Chapter 12. It includes a complete description of commuting matrices. Chapter 13 is a thorough treatment of stability questions for matrices and scalar polynomials. The classical polynomial criteria of the nineteenth century are developed in a systematic and self-contained way from the more recent inertia theory of matrices. Chapter 14 contains an introduction to the recently developed spectral theory of matrix polynomials in sufficient depth for many applications, as well as providing access to the more general theory of matrix polynomials. The greater part of this book was written while the second author was a Research Fellow in the Department of Mathematics and Statistics at the University of Calgary. Both authors are pleased to acknowledge support during this period from the University of Calgary. Many useful comments on the first edition are embodied in the second, and we are grateful to many colleagues and readers for providing them. Much of our work has been influenced by the enthusiasms of co-workers I. Gohberg, L. Rodman, and L. Lerer, and it is a pleasure to acknowledge our continued indebtedness to them. We would like to thank H. K. Wimmer for several constructive suggestions on an early draft of the second edition, as well as other colleagues, foo numerous to mention by name, who made helpful comments. The secretarial staff of the Department of Mathematics and Statistics at the University of Calgary has been consistently helpful and skillful in preparing the typescript for this second edition. However, Pat Dalgetty bore the brunt of this work, and we are especially grateful to her. During the period of production we have also benefitted from the skills and patience demonstrated by the staff of Academic Press. It has been a pleasure to work with them in this enterprise. # Contents | ~rejace | | xiii | |---------|------------------------------------------------------|------| | 1 M | latrix Algebra | | | 1.1 | Special Types of Matrices | 2 | | 1.2 | The Operations of Addition and Scalar Multiplication | . 4 | | 1.3 | Matrix Multiplication | 7 | | 1.4 | Special Kinds of Matrices Related to Multiplication | 10 | | 1.5 | Transpose and Conjugate Transpose | 13 | | 1.6 | Submatrices and Partitions of a Matrix | 16 | | 1.7 | Polynomials in a Matrix | 19 | | 1.8 | Miscellaneous Exercises | 21 | | | | · | | 2 D | eterminants, Inverse Matrices, and Rank | | | 2.1 | Definition of the Determinant | 23 | | 2.2 | Properties of Determinants | 27 | | 2.3 | Cofactor Expansions | 32 | | 2.4 | Laplace's Theorem | 36 | | 2.5 | The Binet-Cauchy Formula | 39 | | 2.6 | Adjoint and Inverse Matrices | 42 | | 2.7 | Elementary Operations on Matrices | 47 | | 2.8 | Rank of a Matrix | 53 | | 2.9 | Systems of Linear Equations and Matrices | 56 | | 2.10 | The LU Decomposition | 61 | | 2.11 | Miscellaneous Exercises | 63 | | 3 L | inear, Euclidean, and Unitary Spaces | | | 3.1 | Definition of a Linear Space | /1 | | 3.2 | Subspaces | ₹75 | | viii | CONTENTS | |------|----------| | | | | 3.3 | Linear Combinations | 78 | |------|-----------------------------------------------------------------------|-----------| | | Linear Dependence and Independence | 80 | | | The Notion of a Basis | 83 | | 3.6 | Sum and Direct Sum of Subspaces | 87 | | 3.7 | Matrix Representation and Rank | 91 | | 3.8 | Some Properties of Matrices Related to Rank | 95 | | 3.9 | Change of Basis and Transition Matrices | 98<br>98 | | | Solution of Equations | 100 | | | Unitary and Euclidean Spaces | 100 | | | | 104 | | | Orthogonal Systems | 107 | | | Orthogonal Subspaces | | | 3.14 | Miscellaneous Exercises | 113 | | 4 L | inear Transformations and Matrices | | | 4.1 | Linear Transformations | 117 | | 4.2 | Matrix Representation of Linear Transformations | 122 | | 4.3 | Matrix Representations, Equivalence, and Similarity | 127 | | 4.4 | Some Properties of Similar Matrices | 131 | | 4.5 | Image and Kernel of a Linear Transformation | 133 | | 4.6 | Invertible Transformations | 138 | | 4.7 | Restrictions, Invariant Subspaces, and Direct Sums of Transformations | 142 | | 4.8 | Direct Sums and Matrices | 145 | | 4.9 | Eigenvalues and Eigenvectors of a Transformation | 147 | | 4.10 | Eigenvalues and Eigenvectors of a Matrix | 152 | | 4.11 | The Characteristic Polynomial | 155 | | 4.12 | The Multiplicities of an Eigenvalue | 159 | | 4.13 | First Applications to Differential Equations | 161 | | 4.14 | Miscellaneous Exercises | 164 | | 5 L | inear Transformations in Unitary Spaces and Simple Matrices | | | 5.1 | Adjoint Transformations | 168 | | 5.2 | Normal Transformations and Matrices | 174 | | 5.3 | Hermitian, Skew-Hermitian, and Definite Matrices | 178 | | 5.4 | Square Root of a Definite Matrix and Singular Values | 180 | | 5.5 | Congruence and the Inertia of a Matrix | 184 | | 5.6 | Unitary Matrices | 188 | | 5.7 | Polar and Singular-Value Decompositions | 190 | | 5.8 | Idempotent Matrices (Projectors) | 194 | | 5.9 | Matrices over the Field of Real Numbers | 200 | | | Bilinear, Quadratic, and Hermitian Forms | 202 | | | Finding the Canonical Forms | 205 | | | The Theory of Small Oscillations | 208 | | | Admissible Pairs of Matrices | 212 | | | Miscellaneous Exercises | 217 | | | | <i></i> , | CONTENTS ix | 6 The Jordan Canonical Form: A Geometric Approach | | | |---------------------------------------------------|-------------------------------------------------------------|------| | 6.1 | Annihilating Polynomials | 221 | | 6.2 | Minimal Polynomials | 224 | | 6.3 | Generalized Eigenspaces | 229 | | 6.4 | The Structure of Generalized Eigenspaces | 232 | | 6.5 | The Jordan Theorem | 236 | | 6.6 | Parameters of a Jordan Matrix | 239 | | 6.7 | The Real Jordan Form | 242. | | 6.8 | Miscellaneous Exercises | 244 | | 7 N | fatrix Polynomials and Normal Forms | | | 7.1 | The Notion of a Matrix Polynomial | 246 | | 7.2 | Division of Matrix Polynomials | 248 | | 7.3 | Elementary Operations and Equivalence | 253 | | 7.4 | | 256 | | 7.5 | Invariant Polynomials and the Smith Canonical Form | 259 | | 7.6 | | 262 | | 7.7 | <b>,</b> | 265 | | 7.8 | | 269 | | 7.9 | | 271 | | | The Smith Form: Differential and Difference Equations | 274 | | 7.11 | Miscellaneous Exercises | 278 | | 8 1 | he Variational Method | | | 8.1 | Field of Values. Extremal Eigenvalues of a Hermitian Matrix | 283 | | 8.2 | Courant-Fischer Theory and the Rayleigh Quotient | 286 | | 8.3 | The Stationary Property of the Rayleigh Quotient | 289 | | 8.4 | Problems with Constraints | 290 | | 8.5 | The Rayleigh Theorem and Definite Matrices | 294 | | 8.6 | The Jacobi-Gundelfinger-Frobenius Method | 296 | | 8.7 | An Application of the Courant-Fischer Theory | 300 | | 8.8 | Applications to the Theory of Small Vibrations | 302 | | 9 1 | Functions of Matrices | | | 9.1 | Functions Defined on the Spectrum of a Matrix | 305 | | 9.2 | | 306 | | 9.3 | | 308 | | 9.4 | | 310 | | 9.5 | 1, | 314 | | 9.6 | | 320 | | 9.7 | Further Properties of Functions of Matrices | 322 | | X | | CONTENTS | |-------|-----------------------------------------------------------|----------| | 9.8 | Sequences and Series of Matrices | 325 | | 9.9 | The Resolvent and the Cauchy Theorem for Matrices | 329 | | 9.10 | Applications to Differential Equations | 334 | | 9.11 | Observable and Controllable Systems | 340 | | 9.12 | Miscellaneous Exercises | 345 | | 10 N | orms and Bounds for Eigenvalues | | | 10.1 | | 350 | | 10.2 | | 354 | | | Matrix Norms | 358 | | | Induced Matrix Norms | 362 | | | Absolute Vector Norms and Lower Bounds of a Matrix | 367 | | | The Gersgorin Theorem | 371 | | | Gersgorin Disks and Irreducible Matrices | 374 | | | The Schur Theorem | 377 | | 10.9 | Miscellaneous Exercises | 380 | | 11 P | erturbation Theory | | | 11.1 | Perturbations in the Solution of Linear Equations | 383 | | 11.2 | Perturbations of the Eigenvalues of a Simple Matrix | 387 | | 11.3 | Analytic Perturbations | 391 | | 11.4 | Perturbation of the Component Matrices | 393 | | 11.5 | Perturbation of an Unrepeated Eigenvalue | 395 | | 11.6 | Evaluation of the Perturbation Coefficients | 397 | | 11.7 | Perturbation of a Multiple Eigenvalue | 399 | | 12 L | inear Matrix Equations and Generalized Inverses | | | 12.1 | The Notion of a Kronecker Product | 406 | | 12.2 | Eigenvalues of Kronecker Products and Composite Matrices | 411 | | 12.3 | Applications of the Kronecker Product to Matrix Equations | 413 | | 12.4 | Commuting Matrices . | 416 | | 12.5 | Solutions of $AX + XB = C$ | 421 | | 12.6 | One-Sided Inverses | 424 | | 12.7 | Generalized Inverses | 428 | | 12.8 | The Moore-Penrose Inverse | 432 | | 12.9 | The Best Approximate Solution of the Equation $Ax = b$ | 435 | | 12.10 | Miscellaneous Exercises | 438 | | 13 S | tability Problems | | | 13.1 | The Lyapunov Stability Theory and Its Extensions | 441 | | 13.2 | Stability with Respect to the Unit Circle | 451 | | | · · · · · · · · · · · · · · · · · · · | | | CONTENTS | | X | |-----------------------------------------------------|------------------------------------------------------|------| | 13.3 | The Bezoutian and the Resultant | 454 | | 13.4 | The Hermite and the Routh-Hurwitz Theorems | 461 | | | The Schur-Cohn Theorem | 466 | | 13.6 I | Perturbations of a Real Polynomial | 468 | | | The Liénard-Chipart Criterion | 470 | | | The Markov Criterion | 474 | | 13.9 | A Determinantal Version of the Routh-Hurwitz Theorem | 478 | | 13.10 | The Cauchy Index and Its Applications | 482 | | 14 Ma | trix Polynomials | | | 14.1 | Linearization of a Matrix Polynomial | 490 | | 14.2 | Standard Triples and Pairs | 493 | | 14.3 | The Structure of Jordan Triples | 500 | | 14.4 | Applications to Differential Equations | 506 | | | General Solutions of Differential Equations | 509 | | | Difference Equations | 512 | | | A Representation Theorem | 516 | | | Multiples and Divisors | 518 | | 14.9 | Solvents of Monic Matrix Polynomials | 520 | | 15 No | nnegative Matrices | | | 15.1 | rreducible Matrices | 528 | | 15.2 | Nonnegative Matrices and Nonnegative Inverses | 530 | | | The Perron-Frobenius Theorem (I) | 532 | | 15.4 | The Perron-Frobenius Theorem (II) | 538 | | | Reducible Matrices | 543 | | | Primitive and Imprimitive Matrices | 544 | | - | Stochastic Matrices | 547 | | 15.8 | Markov Chains | 550 | | Appen | dix 1: A Survey of Scalar Polynomials | 553 | | Appendix 2: Some Theorems and Notions from Analysis | | 557 | | | dix 3: Suggestions for Further Reading | 560 | | Index . | | 1563 | | | | | #### CHAPTER 1 # Matrix Algebra An ordered array of *mn* elements $a_{ij}$ (i = 1, 2, ..., m; j = 1, 2, ..., n) written in the form $$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$ is said to be a rectangular $m \times n$ matrix. These elements can be taken from an arbitrary field $\mathcal{F}$ . However, for the purposes of this book, $\mathcal{F}$ will always be the set of all real or all complex numbers, denoted by $\mathbb{R}$ and $\mathbb{C}$ , respectively. A matrix A may be written more briefly in terms of its elements as $$A = [a_{ij}]_{i,j=1}^{m,n}$$ , or $A = [a_{ij}],$ where $a_{ij}$ $(1 \le i \le m, 1 \le j \le n)$ denotes the element of the matrix lying on the intersection of the *i*th row and the *j*th column of A. Two matrices having the same number of rows (m) and columns (n) are matrices of the same size. Matrices of the same size $$A = [a_{ij}]_{i,j=1}^{m,n}$$ and $B = [b_{ij}]_{i,j=1}^{m,n}$ are equal if and only if all the corresponding elements are identical, that is, $a_{ij} = b_{ij}$ for $1 \le i \le m$ and $1 \le j \le n$ . The set of all $m \times n$ matrices with real elements will be denoted by $\mathbb{R}^{m \times n}$ . Similarly, $\mathbb{C}^{m \times n}$ is the set of all $m \times n$ matrices with complex elements. ì 2 1 Matrix Algebra #### 1.1 Special Types of Matrices If the number of rows of a matrix is equal to the number of columns, that is, m = n, then the matrix is square or of order n: $$A = [a_{ij}]_{i, j=1}^{n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$ The elements $a_{11}, a_{22}, \ldots, a_{nn}$ of a square matrix form its main diagonal, whereas the elements $a_{1n}, a_{2,n-1}, \ldots, a_{n1}$ generate the secondary diagonal of the matrix A. Square matrices whose elements above (respectively, below) the main diagonal are zeros, $$A_{1} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix},$$ are called lower- (respectively, upper-) triangular matrices. Diagonal matrices are a particular case of triangular matrices, for which all the elements lying outside the main diagonal are equal to zero: $$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} = \operatorname{diag}[a_{11}, a_{22}, \dots, a_{nn}].$$ If $a_{11} = a_{22} = \cdots = a_{nn} = a$ , then the diagonal matrix A is called a scalar matrix; $$A = \begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a \end{bmatrix} = \operatorname{diag}[a, a, \dots, a].$$ In particular, if a = 1, the matrix A becomes the unit, or identity matrix $$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix},$$ and in the case a = 0, a square zero-matrix $$0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & & \ddots & \vdots \\ \vdots & \ddots & & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$ is obtained. A rectangular matrix with all its elements zero is also referred to as a zero-matrix. A square matrix A is said to be a Hermitian (or self-adjoint) matrix if the elements on the main diagonal are real and whenever two elements are positioned symmetrically with respect to the main diagonal, they are mutually complex conjugate. In other words, Hermitian matrices are of the form $$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \overline{a}_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a}_{1n} & \overline{a}_{2n} & \cdots & a_{nn} \end{bmatrix},$$ so that $a_{ji} = \bar{a}_{ij}$ for i = 1, 2, ..., n, j = 1, 2, ..., n, and $\bar{a}_{ij}$ denotes the complex conjugate of the number $a_{ij}$ . If all the elements located symmetrically with respect to the main diagonal are equal, then a square matrix is said to be symmetric: $$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}.$$ It is clear that, in the case of a *real matrix* (i.e., consisting of real numbers), the notions of Hermitian and symmetric matrices coincide. Returning to rectangular matrices, note particularly those matrices having only one column (column-matrix) or one row (row-matrix) of length, or size, n: $$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, \quad \boldsymbol{c}^{\mathsf{T}} = [c_1 \quad c_2 \quad \cdots \quad c_n].$$ The reason for the T symbol, denoting a row-matrix, will be made clear in Section 1.5. Such $n \times 1$ and $1 \times n$ matrices are also referred to as vectors or ordered n-tuples, and in the cases n = 1, 2, 3 they have an obvious geometrical 4 1 Matrix Algebra Fig. 1.1 Coordinates and position vectors. meaning as the coordinates of a point P (or as components of the vector $\overrightarrow{OP}$ ) in one-, two-, or three-dimensional space with respect to the coordinate axes (Fig. 1.1). For example, a point P in the three-dimensional Euclidean space, having Cartesian coordinates $(x_0, y_0, z_0)$ , and the vector $\overrightarrow{OP}$ , are associated with the $1 \times 3$ row-matrix $[x_0 \ y_0 \ z_0]$ . The location of the point P, as well as of the vector $\overrightarrow{OP}$ , is described completely by this (position) vector. Borrowing some geometrical language, the *length* of a vector (or position vector) is defined by the natural generalization of Euclidean geometry: for a vector b with elements $b_1, b_2, \ldots, b_n$ the length is $$|b| \triangleq (|b_1|^2 + |b_2|^2 + \cdots + |b_n|^2)^{1/2}.$$ Note that, throughout this book, the symbol $\triangleq$ is employed when a relation is used as a definition. ### 1.2 The Operations of Addition and Scalar Multiplication Since vectors are special cases of matrices, the operations on matrices will be defined in such a way that, in the particular cases of column matrices and of row matrices, they correspond to the familiar operations on position vectors. Recall that, in three-dimensional Euclidean space, the sum of two position vectors is introduced as $$[x_1 \ y_1 \ z_1] + [x_2 \ y_2 \ z_2] \triangleq [x_1 + x_2 \ y_1 + y_2 \ z_1 + z_2].$$ This definition yields the parallelogram law of vector addition, illustrated in Fig. 1.2. Fig. 1.2 The parallelogram law. For ordered *n*-tuples written in the form of row- or column-matrices, this operation is naturally extended to $$[x_1 \quad x_2 \quad \cdots \quad x_n] + [y_1 \quad y_2 \quad \cdots \quad y_n]$$ $$\triangleq [x_1 + y_1 \quad x_2 + y_2 \quad \cdots \quad x_n + y_n]$$ or $$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \triangleq \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}.$$ That is, the elements (or components, or coordinates) of the resulting vector are merely the sums of the corresponding elements of the vectors. Note that only vectors of the same size may be added. Now the following definition of the sum of two matrices $A = [a_{ij}]_{i,j=1}^{m,n}$ and $B = [b_{ij}]_{i,j=1}^{m,n}$ of the same order is natural: $$A + B \triangleq [a_{ij} + b_{ij}]_{i, j=1}^{m, n}$$ The properties of the real and complex numbers (which we refer to as scalars) lead obviously to the commutative and associative laws of matrix addition. Exercise 1. Show that, for matrices of the same size, $$A + B = B + A,$$ $(A + B) + C = A + (B + C).$ These rules allow easy definition and computation of the sum of several matrices of the same size. In particular, it is clear that the sum of any 6 1 Matrix Algebra number of $n \times n$ upper- (respectively, lower-) triangular matrices is an upper- (respectively, lower-) triangular matrix. Note also that the sum of several diagonal matrices of the same order is a diagonal matrix. The operation of subtraction on matrices is defined as for numbers. Namely, the *difference* of two matrices A and B of the same size, written A - B, is a matrix X that satisfies $$X + B = A$$ . Obviously, $$A - B = [a_{ij} - b_{ij}]_{i, j=1}^{m, n},$$ where $$A = [a_{ij}]_{i,j=1}^{m,n}, \quad B = [b_{ij}]_{i,j=1}^{m,n}.$$ It is clear that the zero-matrix plays the role of the zero in numbers: a matrix does not change if the zero-matrix is added to it or subtracted from it. Before introducing the operation of multiplication of a matrix by a scalar, recall the corresponding definition for (position) vectors in three-dimensional Euclidean space: If $\mathbf{a}^T = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$ and $\alpha$ denotes a real number, then the vector $\alpha \mathbf{a}^T$ is defined by $$\alpha \mathbf{a}^{\mathsf{T}} \triangleq [\alpha a_1 \quad \alpha a_2 \quad \alpha a_3].$$ Thus, in the product of a vector with a scalar, each element of the vector is multiplied by this scalar. This operation has a simple geometrical meaning for real vectors and scalars (see Fig. 1.3). That is, the length of the vector $\alpha a^{T}$ is $|\alpha|$ times the length of the vector $a^{T}$ , and its orientation does not change if $\alpha > 0$ and it reverses if $\alpha < 0$ . Passing from (position) vectors to the general case, the product of the matrix $A = [a_{ij}]$ with a scalar $\alpha$ is the matrix C with elements $c_{ij} = \alpha a_{ij}$ , that is, $C \triangleq [\alpha a_{ij}]$ . We also write $C = \alpha A$ . The following properties of scalar Fig. 1.3 Scalar multiplication.