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Preface

In this book the authors try to bridge the gap between the treatments ot matrix
theory and linear algebra to be found in current textbooks and the mastery of
these topics required to use and apply our subject matter in several important
areas of application, as well as in mathematics itself. At the same time we
present a treatment that is as self-contained as is reasonably possible, beginning
‘with the most fundamental ideas and definitions. In order to accomplish this
double purpose, the first few chapters include a complete treatment of material to
be found in standard courses on matrices and linear algebra. This part includes
development of a computational algebraic development (in the spirit of the first
edition) and also development of the abstract methods of finite-dimensional
linear spaces. Indeed, a balance is maintained through the book between the
two powerful techniques of matrix algebra and the theory of linear spaces and
transformations.

The later chapters of the book are devoted to the development of material that
is widely useful in a great variety of applications. Much of this has become a part
of the language and methodology commonly used in modern science and en-
gineering. This material "includes variational methods, perturbation theory,
generalized inverses, stability theory, and so on, and has innumerable applica-
tions in engineering, physics, economics, and statistics, to mention a few.

Beginning in Chapter 4 a few areas of application are developed in some
detail. First and foremost we refer to the solution of constant-coefficient systems
of differential and difference equations. There are also careful developments of
the first steps in the theory of vibrating systems, Markov processes. and systems
theory, for example.

The book will be useful for readers in two broad categories. One consists of
those interested in a thorough reference work on matrices and linear algebra for
use in their scientific work, whether in diverse applications or i mathematics

Xiii



Xiv PREFACE

itself. The other category consists of undergraduate or graduate students in a
variety of possible programs where this subject matter is required. For example,
foundations for courses offered in mathematics, computer science, or engineer-
ing programs may be found here. We address the latter audience in more detail.

The first seven chapters are essentially self-contained and require no formal
prerequisites beyond college algebra. However, experience suggests that this
material is most appropriately used as a second course in matrices or linear
algebra at the sophomore or a more senior level.

There are possibilities for several different courses depending on specific
needs and specializations. In general, it would not be necessary to work system-
atically through the first two chapters. They serve to establish notation, terminol-
ogy, and elementary results, as well as some deeper results concerning determi-
nants, which can be developed or quoted when required. Indeed. the first two
chapters are written almost as compendia of primitive definitions, results, and
exercises. Material for a traditional course in linear algebra, but with more
emphasis on matrices, is then contained in Chapters 3~6, with the possibility of
replacing Chapter 6 by Chapter 7 for a more algebraic development of the Jordan
normal form including the theory of elementary divisors.

More advanced courses can be based on selected material from subsequent.
chapters. The logical connections between these chapters are indicated below to
assist in the process of course design. It is assumed that in order to absorb any of
these chapters the reader has a reasonable grasp of the first seven, as well as
some knowledge of calculus. In this sketch-the stronger connections are denoted
by heavier lines..

1105
8 6,7
12 9 10
y ¥ ,
13 14 11 15

Prerequisite structure by chapters

There are many exercises and examples throughout the book. These range
from computational exercises to assist the reader in fixing ideas, to extensions of
the theory not developed in the text. In some cases complete solutions are given,
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and in others hints for solution are provided. These are seen as an integral part of
the book and the serious reader is expected to absorb the information in them as
well as that in the text.

In comparison with the 1969 edition of ‘‘The Theory of Matrices’’ by the first
author, this volume is more comprehensive. First, the treatment of material in the
first seven chapters (four chapters in the 1969 edition) is completely rewritten
and includes a more thorough development of the theory of linear spaces and
transformations, as well as the theory of determinants.

Chapters 8~11 and 15 (on variational' methods. functions of matrices, norms,
perturbation theory, and nonnegative matrices) retain the character and form of
chapters of the first edition, with improvements in exposition and some addition-
al material. Chapters 1214 are essentially extra material and include some quite
recent ideas and developments in the theory of matrices. A treatment of linear
equations in matrices and generalized inverses that is sufficiently detailed for
most applications is the subject of Chapter 12. It includes a complete description
of commuting matrices. Chapter 13 is a thorough treatment of stability questions
for matrices and scalar polynomials. The classical polynomial criteria of the
nineteenth century are developed in a systematic and self-contained way from the
more recent inertia theory of matrices. Chapter 14 contains an introductjon to the
recently developed spectral theory of matrix polynomials in sufficient depth for
many applications, as well as providing access to the_more genefai“theory of
matrix polynomials.

The greater part of this book was written while the second author was a
Research Fellow in the Department of Mathematics and Statistics at the Universi-
ty of Calgary. Both authors are pleased to acknowledge support during this
period from the University of Calgary. Many useful comments on the first edition
are embodied in the second, and we are grateful to many colleagues and readers
for providing them. Much of our work ts been influenced by the enthusiasms of
co-workers 1. Gohberg, L. Rodman, and L. Lerer, and it is a pleasure to
acknowledge our continued indebtedness to them. We would like to thank H. K.
Wimmer for several constructive suggestions on an early draft of the second
edition, as well as other colleagues, foo numerous to mention by name, who
made helpful comments. °

The secretarial staff of the Departinent of Mathematics and Statistics at the
University of Calgary has been consistently helpful and skillful in preparing the
typescript for this second edition. However, Pat Dalgetty bore the brunt of this
work, and we are especially grateful to her. During the period of production we
have also benefitted from the skills and patience demonstrated by the staff of
Academic Press. It has been a pleasure to work with them in this enterprise.

P. Lancaster M. Tismenetsky
Calgary Haifa
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CHAPTER 1

Matrix Algebra

written in the form

ayy Q32 0 Oy
a1 Gy 1 @
A= 7 7
Am1 Qmz2 " Omn

is said to be a rectangular m x n matrix. These elements can be taken from

an arbitrary field #. However, for the purposes of this book, # will always

be the set of all real or all complex numbers, denoted by Rand C, respectively.
A matrix A may be written more briefly in terms of its elements as

A= [aij :"1"=l’ or A= [(l,- ']’

wherea; {1l <i<ml <j<n denotes the clement of the matrix lying on
the mtcrswtmn of the ith row and the jth column of 4.
Two matrices having the same number of rows (m) and columns (n) are
malrices of the same size. Matrices of the same size -
A = [a;J7, and B={[b

Uljl

are equal if and only if all the corresponding elements are identical, that is,
a;=byfort <i<mandl <j<n
The set of all m x n matrices with real elements will be denoted by R™*",
Similarly, C™*" is the set of allm x n matrices with complex elements.



2 1 MATRIX ALGEBRA

- 1.1 Special Types of Matrices

If the number of rows of a matrix is equal io the number of columns, that
is, m = n, then the matrix is square or of order n:

yy Ay c:c Ay

. az, azi e QAzp
— n — 2
A—[aij:li,j=l_ - )
Any Q2 " Qup|

The elements a, 4, a5, ..., a,, of a square matrix form its main diagonal,
whereas the elements a,,, a, ,-, - - ., a,, generate the secondary diagonal of
the matrix 4.

Square matrices whose elements above (respectively, below) the main
diagonal are zeros,

a, O 0 ayy Q2 cc 0 Qg

asy djz; : 0 az; :

Al = . : Az = . . )
. o/ . o Quoqn ’

Ay *t lpp-1 Qan 0 e 0 Ay

are called lower- (respectively, upper-) triangular matrices.
Diagonal matrices are a particular case of triangular matrices, for which
all the elements lying outside the main diagonal are equal to zero:

a, 0 --- 0
A= 0 422 . 0 = diagfa,, @23, .-, Aul-
0 - 0 a,
Ifa,, =a,, = = a, = a, then the diagonal matrix 4 is called a scah‘z‘r.-
matrix,
a 0 --- 0
- 0 "? .. 0 = diag[a, a, . .. Lak]_:
6 - 0 a
In particular, if @ = 1, the matrix 4 becomes the unit, or identity matrix
t 0 --- 0
=0

Do o)
o0 --- 0 1
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and in the case a = 0, a square zero-matrix

0 S
0= ~
SN 0
0 - 0 0

is obtained. A rectangular matrix with all its elements zero is also referred
to as a zero-matrix.

A square matrix A is said to be a Hermitian (or self-adjoint) matrix if the
elements on the main diagonal are real and whenever two elements are .
positioned symmetrically with respect to the main diagonal, they are mutually
complex conjugate. In other words, Hermitian matrices are of the form

a,, a2 - Qp
ay; Qz; - Az,
aln aZn et Qup
sothata; =a;fori=12,...,nj=12,....n and a;; denotes the com-

plex conjugate of the number a;;.
If all the elements located symmetrically with respect to the main diagonal
are equal, then a square matrix is-said to be symmetric:

41y Qyy ot Qg
Ay dz; - Qg
ay, Qaz, **+ Qp

It is clear that, in the case of a real matrix (i.e, consisting of real numbers),
the notions of Hermitian and symmetric matrices coincide.

Returning to rectangular matrices, note particularly those matrices having
only one column (column-matrix) or one row (row-matrix) of length, or
size, n:

b=| °|, c"=[c, ¢ -+ ca)

The reason for the T symbol, denoting a row-matrix, will be made clear in
Section 1.5.

Such n x 1 and 1 x n matrices are also_referied to as vectors or ordered
n-tuples, and in the cases n = 1,.2,73 they have an obvious geometrical
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Pixo.¥0.20)

xo Plxg)

Fig. 1.1 Coordinates and position vectors.

meaning as the coordinates of a point P (or as components of the vector 6_15)
in one-, two-, or three-dimensional space with respect to the coordinate axes
(Fig. 1.1).

For example, a point P in the three-dimensional Egclidean space, having
Cartesion coordinates (xg, ¥o. Zo). and the vector OP, are associated with
the 1 x 3 row-matrix [xq o 2o} The location of the point P, as well as
of the vector OP, is described completely by this (position) vector.

Borrowing some geometrical language, the length of a vector (or position
vector) is defined by the natural generalization of Euclidean geometry: for
a vector b with elements by, b,, ..., b, the length is

1612 (16,1 + 16,17 + -+ + |b, )2

Note that, throughout this book, the symbol £ is employed when a
relation is used as a definition.

1.2 The Operations of Addition and Scalar Multiplication

Since vectors are special cases of matrices, the operations on matrices will
be defined in such a way that, in the particular cases of column matrices and
of row matrices. they correspond to the familiar operations on position
vectors. Recall that. in tbrec-dimensional Euclidean space, the sum of two
position vectors is mtroduced as

BRI R-PE B SO z;) = [xi +x3 ¥, + Y2 zp + 2]

Thas definition yields the” parallelogram law of vector addition, illustrated
in Fig. 1.2,
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z

Rixy¥xp,y1 7y 2.2, %2;)
A
ﬂQ(xz,yz,zz)

/P(xl'y1'z1)

A\
<

Fig. 1.2 The parallelogram Jaw.

For ordered n-tuples written in the form of row- or column-matrices, this
operation is naturally extended to

[xy x2 o x4+ y2 o0 yal
Blx;+y, x4y o X+ Vo
or
Xy ¥y X3+ ¥
x.z + .".2 a| X2 + Y2
x’l J'n xn + .)‘n

That is, the elements (or components, or coerdinates) of the resulting vector
are merely the sums of the corresponding elements of the vectors. Note that
only vectors of the same size may be added.

Now the followmg definition of the sum of two matrices 4 = [a

ij l ] 1
and'B = [b;;J7/., of the same order is natural:

A+B [au+bux;-—l

The properties of the real and complex numbers (which we refer to as
scalars) lead obviously to the commutative and associative laws of matrix
_addition.

Exercise 1. Show that, for matrices of the same size,

A+ B=B+ A,
(A+B+C=4+B+C). O

These rules allow easy definition and computation of the sum of several
matrices of the same size. In particular, it is clear that the sum of any
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number of n x n upper- (respectively, lower-) triangular matrices is an
upper- (respectively, lower-) triangular matrix. Note also that the sum of
several diagonal matrices of the same order is a diagonal matrix.

The operation of subtraction on matrices is defined as for numbers.
Namely, the difference of two matrices A and B of the same size, written
A — B, is a matrix X that satisfies

X+ B=A.
Obviously,
A - B = [a; - bjI7%,
where

A = [a;]7% 0, B = [b;;17%
It is clear that the zero-matrix plays the role of the zero in numbers: a
matrix does not change if the zero-matrix is added to it or subtracted from it.
Before introducing the operation of multiplication of a matrix by a scalar,
recall the corresponding definition for (position) vectors in three-dimensional
Euclidean space: If @” = [a, a, a3] and « denotes a real number, then
the vector aa’ is defined by

aa’ & [oa, aa, aa,).

Thus, in the product of a vector with a scalar, each element of the vector is
multiplied by this scalar.

This operation has a simple geometrical meaning for real vectors and
scalars (see Fig. 1.3). That is. the length of the vector aa” is |« times the length
of the vector a, and its orientation does not change if « > 0 and it reverses
if 2 < 0.

Passing from (position) vectors to the general case, the product of the
matrix A = [a;;] with a scalar « is the matrix C with elements ¢;; = aa;;,
thatis, C £ [aq, ;1. We also write C = a4. The following properties of scalar

a4

Fig. 1.3 Scalar multiplication.



