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Preface

Major efforts of the mathematical communiiy in the United States in de-
fense research during World War II led to the development of many new
areas of applied mathematics, and provided sufficient justification for
future funding of research in these areas. Several areas of pure and
applied research became known under the generql title of operations re-
search. Search theory emerged as a major part of operations research in
the work of the Antisubmarine Warfare Operations Research Group (ASWORG),
directed by P. M. Morse, under Admiral E. King, Chief of Naval Operations
and Commander in Chief, U.S. Fleet. Specific tasks in the development
of procedures for antisubmarine search were undertakerjby B. O. Koopman,
J. M. Dobbie, and others. The origiﬁal reports of the Qperations Re-
search Group are available as Refs. 1 and 2. Koopman laid down the
foundations of search theory in Ref. 3. An exposition of fhe human

side of this effort can be found in Morse's reminiscences [4,5].

Since the declassification in 1958 of the original sea#ch theory
contributions during and after World War II, the field develéped rapid-
ly into an independent discipline closeiy connected with various prob-
lems of optimal control, game theory, differential games, and statistics.
On the practical side, there were many well-publicized achievements of
search plans that followed search theory recommendations. We refer to
the opening review of H. R. Richardson in this volume for the literature
on these successes, in some of which the author of the review took an
active part. There is a considerable body of literature on the tradi-

tional approach to search theory initiated by Koopman. We cite
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iv Preface

particularly the classical book of Stone [6]. Other recent monographs
on search theory are those of Ahlswede and Wagner [7], Washburn [8],

and Mangel [9]. The classic contribution of Koopman {2] was publiShed
in expanded and updated form in Ref. 10. Different approaches to search
theory, particularly from the game-theoretic point of view, were pio-
neered by R. Issaacs. Important progress in this direction is due to
Gal [11}. As references to differential games and.pursuit games, some
of which are considered in contributions to this volume, we recommend
the books of Issaacs [12] and Hajek [13].

Search theory as it stands now has a few definitive principles and
criteria that evolved since Koopman's time. Attempts to incorporate
dynamic programming and game-theoretic considerations have ifftroduced
many mathematical techniques in this area. It is still open to further
expansion and fefinement of definitions, algorithms, and‘concepts. A
variety of techniques borrowed from such diverse areas as classical and
quantum dynamical systems, ergodic theory, number theory, and statistical
decision theory have been introduced recently. This volume summarizes
the latest developments in search theory, including the classical, dif-
Perential equations, optimal control, game-theoretic, and statistical
and ergodic theory approaches.

Chapters in this volume are organized as follows. The contributions
are preceded by the general introductory article by H. R. Richardson,
-originally prepared for the Encyclopedia of Statistical Sciences (Wiley).
It contains a review of the contemporary literature and clearly describes
the basic splutioﬁ to an optimal search problem with an exponential de-
tection function. Also, references to nonmaritime applications of search

" theory (to biology, mineral exploration, and maintenance/inspection) are

‘given. The contribution of L. P. Stone covers one-sided and two-sided
detection problems, that is, whether the target is evading or not. This
.review article describes continuous and discrete time strategies as well
as surveillance, and gives an exposition of generalized search optimiza-
.tion (GSO} techniques developed by the author. The two-sided search
strategies are examined in the chapter by S. Gal. He solves a variety of
"hide and seek" games in many discrete and continuous bounded and un-
bounded domains. His work (cf. [11]) has its origins in the classic
model game ""The Princess and the Monster," introduced by Issaacs [12].
An interesting feature appearing in Gal‘s.algorithm is a variety of

randomized strategies, useful in many other search plans.
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A different approach to optimal search stiategies is developed by
M. Mangel. His use of differential equations, which builds on the work
of O. Hellman and J. Keller, provides a consistent framework for solv-
ing complex search problems in a unified way. The ability to use ray
and WKB methods allows researchers to apply a large arsenal of modern
numerical methods to practical problems. M. Mangel kindly permitted us
to publish this review, intended origiﬁalty to be a book. This chapter
also contains references to applications of search theory'to economics
and other social sciences. The chapter by D. V. Chudnovsky and G. V.
Chudnovsky describes systematic ways to generate tours (search paths
or e-Peano curves) for optimal search in bounded domains. A variety
of number-theoretic problems connected with billiard strategies and
uniform distributions is discussed. A‘novel class of random search
plans is described in the contribution of S. Lalley and H. Robbins.
They present a particuiarly elegant and easy-to-implement randomized
strategy to generate nearly optimal tours, and prove new ergodic theo-
rems. Although their chapter treats only circular domains, we are
happy to report that very recently they generalizea their results to
arbitrary bounded domains.® These and similar strategies performed
very impressively in a variety of numerical simulations.

This book should serve-as an invitation to mathematicians and sta-
tisticians to look into the depths of segrch theory; you are bound to
find something new and, perhaps, even something useful. Experts in thi
area will steer you. Their contributions constitute the bulk of this
volume and we cordially thank them: S. Gal: M. Mangel, H. R. Richardsc
and L. Stone. We are fortunate to include their contributions in this
volume. The books by Ruckle {14}, Haley and Stone [15], gnd Hellman
[16] must also be added to the recommended list.

The editors of this volume became interested in a problem of opti-
mal searching when the Columbia University Applied Mathematics Group
started & project in this direction._'We became a part of the group that
pursued these and other applied mathematics problems; it included M.
Friedman, S. Lalley, K. Prendergast, and H. Robbins. The overall ef-
forts of the group, including those in search theory, were coordinated
by W. Brown of Hudson Institute, a cosponsor of the project. The work
of the Columbia Applied Mathematics Group in search theory was conducted
during 1985 and was suppérted in part by U.S. Army contract No. MDA 903-

v
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85-C-0012. These efforts were assisted by the Center for Naval Anal}ses.
We particularly want to thank H. R. Richardson for his guidance, atten-
tion, and help. Members of the Columbia Applied Mathematics Group, and
the editors in particular, would like to express their deepest gratitude
to W. Brown for his constant attention, support, and encouragement in
all the efforts of the group. We thank S. Bryen, F. Kapper, S. Lind-
sfron, and R. Perle of the Department of Defense for their interest and
help. Our conversation with N. Friedman was very enlightening and all
th§ members of the group treasured their discussions with C. K. Chu.

The editors are indebted to M. Friedman, S. Lalley, and K. Prendergast
for the pleasure and enrichment in working with them. Our dear friend
H. Robbins, old navy man that he is, has contributed a lion's share in
this search-theoretic project, doing some exciting mathematics along the
way. Our own numher-theoretic problems got even murkier as we looked

at their search-theoretic interpretation on the computer screen. Our
most sincere thanks are due to Marcel Dekker, Inc., and their editors,

who survived the pursuit and evasion of the undersigned.

David V. Chudnovsky
Gregory V. Chudnovsky
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Search Theory

HENRY R. RICHARDSON / Center for Naval Analyses, Alexandria, Virginia

1. INTRODUCTION

Search theory* came into being during World War II with the work of

B. 0. Koopman and his colleagues in the Antisubmarine Warfare Opera-
tions Research Group (ASWORG). ASWORG was directed by P. M. Morse and
reported to Admiral Ernest King, Chief of Naval Operations and Comman-
der in Chief, U.S. Fleet. Inspired by Morse, many of the fundamental
concepts of search theory, such as sweep width and sweep rate, had been
established by the spring of 1942. Since that time, search theory has
grown to be a major discipline within the field of operations research.
Its applications range from deep-ocean search for submerged objects to
deep-space surveillance for artificial satellites.

' The reader interested in the origins of search theory should con-
sult Morse [29] and Koopman [24]. Early use of search theory to devel-
op naval tactics is discussed in Morse and Kimball [30]; excerpts from
this work appear in [31]. For a modern account of search theory, the
reader should consult Stone [41]. This book provides a rigorous de.
opment of the theory and includes an excellent bibliography and notes
on previous research. Washburn's monograph [52] is also recommended.

Since World War 1I, the principles of search theory have been ap-
Plied successfully in numerous important operations. These include the

1966 search for a lost H-bomb in the Mediterranean near Palomhres,

*This article, in essentially the same form, was originally prepared

for the Kotz-Johnson Encyclopedia of Statistical Sciences, copyrighted
by John Wiley & Sons, Inc.
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Spain, the 1968 search for the lost nuclear submarine Scorpion near the
Azores [36], and the 1974 undefwater search for unexploded ordnance dur-
ing clearance of the Suez Canal. The U.S. Coast Guard employs search
theory in its open-ocean search and rescue planning {39]. Search theory
is also used in astronomy [47] and in radar search for satellites [34].
Numerous additional applications, including those to industry, medicine,
and mineral exploration, are discussed in the proceedings [15] of the
1979 NATO Advanced Research Institute on Search Theory and Applications.
Applications to biology are given in [17] and [18}, and an application
to machine maintenance and inspection is described in [32]. Furthey
references to the literature are provided in the first section. This

is followed in the second section by an illustration of how search the-

ory can be used to solve an optimal search problem.

2. REVIEW OF SEARCH THEORY LITERATURE

Work in search theory can be classified, at least in part, according to
the assumptions made about measures of effectiveness, target motion,
and the way in which search effort is characterized. This chapter is

organized according to these criteria.

2.1 Measures of Effectiveness
Among the many reasures of effectiveness that are used in search analy-

sis, the most common are:

1. Probability of detection

2. Expected time to detection

3. Probability of correctly estimating target "whereabouts”

4. Entropy of the posterior target location probability distribu-

tion

Usually, the objective of a- optimal search is to maximize the
probability of detection with some constraint imposéd on the amount of
search effort available. For a stationary target, it is shown in Stone
[41]) that when the detection function is concave or the search space
and search effort are continuous, a plan that maximizes the probability
of detection in each of successive increments of search effort (incre-
mentally optimal)-will also be optimal for the total effort contained
in the increhents (totally optimal).
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Moreover, for stationary targets, it is often theoretically possi-
ble to construct a "uniformly optimal" search plan. This is a plan for
which probability of detection is maximized at each moment during its
period of application. If a'uniformly optimal search plan exists, it
will (a) maximize the probability of detection over amy period of appli-
cation (i.e., be totally and increments!ly optimal), and (b} minimize
the expected time to detection. An example of such a plan (originally
due to Koopman) is given in the final section.

In a "WH:¥§hbouts” search, the objective is to estimate correctly
the target's location in a collection of cells given a constraint on
search cost. The searcher may succeed either by finding the target
during search or by correctly guessing the target's location after
search. These searches were first studied systematically by Kadane
(see {21]). In many cases of interest, Kadane shows that the optimal
whereabouts search consists of an optimal detection search among all
cells exclusive of the cell with the highest prior target location
probability. If the search fails to find the target, one guesses that
it is in the excluded highest-probability cell.

More recently, Kadane and Stone [22] have considered whereabouts
search in the context of moving targets. They show that the optimal
whereabouts search plan may be found by solving a finite number of op-
timal detection search problems, one for eaqh cell in the grid.

Consideration of entropy as a measure of effectiveness is useful
in certain situations and can be used to draw a distinction between
search and surveillance. For certain stationary target detection search
problems with an exponential detection function, Barker [5] has shown
that the search plan that maximizes the entropy of the posterior target
location probability distribution conditioned upon search failure is
the same as the search plan that maximizes probability of detection.

In a surveillance search, the objectives are usually more complex
than in a detection search. For example, one may wish to estimate tar-
get location correctly at the end of a period of search in order to
take some fﬁrther action. In this case, detection before the end of
the period can contribute to success but does not in itself constitute
success. More general problems of this type are discussed by Tierney
and Kadane {49}, and they obtain necessary conditions for optimality

when target motion is Markovian. In surveillance problems involving
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moving targets and false contacts where the time of terminal action may
not be khown'in advance, Richardson {38] suggests allocating search
~effort to minimize expected entropy (maximize informatiom).

Among other measures of effectiveness that are used in search,
those based on minimax criteria are of particular interest. Corwin [8]
considers search as a statistical game and seeks estimates for target
location. Alpern [3], Gal [14}, and Isaacs {19} consider games in
which minimax strategies are sought for a moving target seeking to

avoid a moving searcher.

2.2 Target Motion B

Assumptions about target motion have a considerable influence on the
characteristics of search plans and the difficulty of computation.

Until recently all bug the simplest search problems involving target
motion were intractable from the point of view of mathematical optimi-
zation. Results were usually obtained by considering transformations
that would convert the problem into an equivalent stationary target
problem (e.g., see Stone and Richardson [42], Stone [43], and Pursihelso
[35)). Representative early work on search with Markovian target motion
is given in Pollock [33], Dobbie [12], and McCabe [28]. Hellman [16]
investigates the effect of search upon targets whose motion is a diffu-
sion process.

The first computationally practical solution to the optimal search
problem for stochastic target motion involving a large number of cells
and time periods is due to Brown [6]. For exponential detection func-
tions, he found necessary and sufficient conditions for search plans
for discrete time and space, and provided an iterative method for opti-
mizing search for targets whose motion is described by mixtures of dis-
crete time and space Markov chains. Washburn [51] extended Brown's
necessary conditions to the case of discrete search effort. Washburn
[53] also prbvides a useful bound on how close a plan is to the optimal
plan. '

Very general treatments of moving target search are provided by
Stone [44] and by Stromquist and Stone [46], allowing efficient numeri-
cal solution in a wide class of practical moving target problems; these
include, for example, non-Markovian motion and nonexponential detection
functions. o .
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The existence of optimal search plans for moving targets is not to
be taken for granted. L. K. Arnold has shown that there are cases where
no allocation function satisfies the necessary conditions given in {46].
In his examples, there appear to be optimal plans, but they concentrate
effort on sets of measure zero and are qutside the class of search allo-
cation functions usually considered. He also shows the existence of

optimal plans whenever the search density is constrained to be bounded.

2.3 Search Effort

Search effort may be either discrete (looks, scans, etc.) or continuous
(time, track length, etc.). In problems involving discrete search ef-
fort, the target is usually considered to be located in one of several
cells or boxes. The search consists of specifying a sequencé of looks
in the cells. Each cell has a prior probability of containing the tar-
get. A detection function b is specified, where b(j,k) is the condi-
tional probability of detecting the target on or before the kth look in
cell j, given that the target is located in cell j. A cost function c
is also specified, where c(j,k) is the cost of performing k looks in
cell j. An early solution to this problem for independent glimpses and

uniform cost was given by Chew [7]. In this case, for 0 s 3 s 1,
. . _ k-1
b(j,k) - b(j, k - 1) = aj(l - aj)

for all j and for k > 0; c(j,k) = k for all j and k' 0. Additional im-
poftant results have been obtained by Matula [27], Blackwell (see Matula
[27]), Kadane [20], and Wegener [54]-[S6].

Kadane's result.[ZO] is particularly interesting since he uses a
variant of the Neyman-Pearson lemma to obtain an optimal plan for the
general case where b(j,k) - b(j, k -~ 1) is a decreasing function of k
for all j. i

In problems involving continuous effort, the target may be located
in Euclidean n-space or in cells as in the case of discrete search. In
the former case it is assumed that the search effort is "infinitely div-
isible" in the sense that it may be allocated as finely as necessary
over the entire search space. The search problem was originally ex-
pressed in this form by Koopman (see [23]). The continuoﬁs effort case

will be considered in greater detail in the remainder of this chapter.
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Just as with discrete search effort, there is a detection function
b, where b(x,z) is the probability of detecting the target with z amount
of effort applied to the point x, given that the target is located at x.
If x is a cell index, then z represents the amount of time or track
length allocated to the cell. 1If x is a point in Euclidean n-space,
then z is a density, as will be made clear in the next section.

Koopman's original solution [23] to the search problem made use of

an exponential function for b of the form
b(x,z) = 1 - exp(-xz),

where x is a positive constant that may depend on x. DeGuenin [9] con-
sidered a more general class of detection functions now referred to as
"regular" (see [41]). Dobbie [11] considered sequential search with a
concave detection function. Richardson and Belkin [37] have treated a
special type of regﬁlar detection function obtained when the parameter
x in the exponential effectiveness function is a random variable. Such
functions occur when sensor capabiliti s are uncertain. Tatsuno and
Kisi [48] address similar problems. Stone has considered very general
detection functions and has collected the results in [41]. For differ-
entiable detectjiop functions, Wagner {50] obtained sufficient conditions
for an optimal search plan with continuous effort using a nonlinear

functional version of the Neyman-Pearson lemma.

2.4 Remarks
Search theory remains a field of active research despite the considera-
ble advances made since its inception more than 40 years ago. A review
of the current status of search theorY’in'terms of practical applica-
tions is given in [45]. Many problems remain to be solved, particular-
ly in cases involving multiple targets and félse targets. Also, system-
atic methods are needed for constructing the prior target location prob-
ability distribution from sometimes conflicting subjective opinion.
More work is also needed on problems where it is essential to take ex-
act account of search track continuity or the switching cost of moving
from one‘region to another. These problems remain intracfable, although
some recent progress has been made (see, e.g., [54] and [25]).

Brown's innovative solution to an important class of moving target

search problems has removed an impediment to progress in this area.



