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Velurne 521
INTRODUCTION

This third international SPIE conference on inteliigent robots and computer vision
contains 55 papers by authors from 10 countries (including France, Germany,
Belgium, Canada, Finland, Greece, China, and Turkey). The theme intelligent
robots refers toreprogrammabie, flexible, muitifunctiona! manipulators. Intelligent
robots require: advanced vision, touch and other sensors; advanced pattern
recognition and image processing algorithms; new high speed processors; and the
use of image understanding and artificial inteliigence techniques. These topics
and others, specific applicatiens, and issues such as 3D data handling, were
addressed in individual sessions.

Improved pattern recognition snd image processing aigorithms, architectures and
moduiar designs are essential tor smart robots. In pattern recognition, various
feature extractors, plus log mapping. Wigner functions and momentinvariants are
described. in all cases, distortion-invariant pattern recognition is the concern.
Uifterent image processing functions for mobile robots, bin picking, and occluded
object processing are addressed and perspective and muliti-resolution processors
are described.

in a session on image understanding {(IU) and artificial intelligence (Al), automatic
targetrecognition, autonomous robots, and the role of Al in robotics are addressed.
Rule-based systems, modeis and primitives for Al and IU use are described. Al and
iU methodologies are essential for control of advanced intelligent robots. Mobile
robots are another major current topic. Various trajectory and task planning
techniques and adantive robot control systems were presented and described on
this topic.

Camera, tactile and 3D sensors (vital for intelligent robots} were the subject of
another session. Advances in each area and other sensor systems were detailedin
these papers. 3D image processing, modeling, representation and data acquisition
are addressed in arother set of papers. The robot systems and applications session
describes applications including measurement, assembly, inspection, detection of
cracks, printed wiring board inspection.

We thank the various cooperating organizations for their help, Tony McPherson of
the Charles Stark Draper Laboratory Inc. for arranging the post conference lab and
facility tour of several robotics companies, our program committee, and the
session chairmen and ali authors.

It has again been a great pleasure to work on this annual meeting (the third in a
continuing series) and the fourth major SPIE robotics conference.

David P. Casasent
Carnegie-Meslion University

Ernest L. Hall
University of Cincinnati
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Chord Distributions in Pattern Recognition:
Distortion Invariance and¢ Parameter Estimation

Wen-Thong Chang and David Casasent
Carnegie-Mellon University
Department of Tlectrical and Computer Engineering
Pittsburgh, Pennsylvania 15213
Abstract

The use of chord distributions in pattern recognition is discussed and efficient ways to
compute such distributions are noted. New methods to achieve scale and in-plane rotational
distorticn-invariant multi-class recognition and estimates of the distortion parameters are

described. 3-D out-of-plane rotational distortion-invariant methods are reviewed.

i. Introduction

Chord distributicons are well-known features that describe the shape of an object and that
are useful for object identification [1-3]. These features can easily be computed (opti-
cally or digitally) from the autocorrelation. 1In Section 2, we define the chord distribu-
tion and discuss different chord pdfs. These include an observation space h(kx,k‘) and a
feature space h{r) and h(6). New insight is provided into the local and global féatures
produced by chord pdfs and the use of silhouette and boundary (profile) imagery. In Section
3, attractive properties of these chord distributions for scale and in-plane rotation in-
variance are discussed. A new use of such features for distortion-invariant multi-class
object recognition and methods to extract the object's scale and orientation are advanced.
In Section 4, methods to achieve 3-D object distortion-invariance (to out-cf-plane rota-
tions) are reviewed. The resultant feature extractor thus enables multi-class object
classification in the presence of a wide variety of geometrical distortions.

2. Chord Features and Distributions

2.1 Definition. The conventional chord distribution h(r,8) is a plot of the distribution
of the lengths (r) and directions (&) of all chords drawn between all pairs of points on the
boundary of the object f(x,y). The two chord pdfs of most use are h(r) and h(6), the pdfs
of chord lengths r and directions ¢. To most easily compute the various chord distribu-
tions, one can begin by forming the autocorrelation

b(x,y) @®b(x,y) = ff bix,y) bix - ket ¥ - Ry)dxdy = R(Q,X,iry) = h(ix,ly) (1)
of the boundary b({x,y) of an object. The autocorrelation describes the number of points
of intersection for a given horizental and vertical shift {ix,2y) between two shifted
images of the object. The value of R at a given (!#x,2y) thus precisely gives the number
of chords with given horizontal and vertical projection lengths (%x,%y) [3-4].

To show this, we wrltel(Rx,Q ) = (r cost, r sinf) where r = (2x2+£y2)1/2 is the radial
chord length and 6 = tan ~(i,/4%,) is the chord's angular orientation.” Substituting into
(1), we see that R{iyx,{iy) contalns information from which h(r,8) can be obtained. From
h{ix,%,), the chord dlsgrlbutlon h{(r,9) can be calculated. The chord pdfs h(r) and h(9)
are more useful and are most easily calculated from h(fy,%,) by appropriately sampling the
autocorrelation function. If the autocorrelation is sampléd radially, we obtain

h(r) = fh(%x,zy)rde (2)
If we sample it angularly, we obtain
h(8) = fh(%x,iy)dr (3)

2.2 Realization. These hir) and h(0) chord pdfs are the features we will use. To obtain
(2) and (3) optically, we form h(ix,%y) optically (typically from the Fourier transform of
the power spectrum of the object) and sample this distribution using wedre and ring-shaped
detector elements {4]. Such a detector unit exists (Figure 1) with 32 wedges in one-half

of a circular plane and 32 rings in the other hall of the plane [5]. The autocorrelation
function is symmetric and thus no loss of information results by sampling only half of the
autocorrelation plane. In terms of chord distributions, the symmetry of the autocorrelation
function arises because each chord in the image is counted twice as one traverses the boun-
dary of the object. 1In one case, one end point of the chord is encountered first and then
the other end point is encountered first. The first corresponds to a chord with projections

2 / SPIE Vol. 521 Intelligent Robots and Computer Vision (1984) .



(1x+%y) and a length r., The symmetric case corresponds to a chord with projections

(-2 '“¥V) and a direction -6 rather than +6. For similar reasons of symmetry, the orienta-
tidn of the wedge and ring halves of the detector does not matter. The wedge outputs pro-
vide h(0) (quantized to 32 B8 values over 180°) and the ring outputs provide h(r) {(quantized
to 32 r values over the radius of the autocorrelation function). Figure 2 shows
the general block diaaram of our chord distribution feature generator using a wedge-ring
detector (WRD).

h(r),h(8) [FEATURE EXTRACTION
AN INPUT AUTOCORRELATION —{>{ ,,WRD (FISHER)

0BJECT —>
7 w SAMPL NG AND CLASSIFICATION

Figure 1. Simplified representa- Figure 2. Simplified Block Diagram of a chord dis-
tion of a wedge-ring tribution pattern recognition system.
detector (WRD). )

2.3 Boundary, Silhouette and Gray-Level Objects. Different chord distributions result
depending on the type of input object. For a boundary or edge image (case A), the distri-
bution produced is of the number of edge or boundary pixels (i.e., the number of chords).
This is the conventional chord distribution. For a silhouette image (binary with all ones
on the object and with zeroes on the background), the distribution produced (case B) 1s
the same as case A, but weighted by the common area of overlap of the two images for the
given (2y,%y) shift. If the shift is large, corresponding to long chords, the weighting
will be small. However, if the shift is small, corresponding to short chords, the weight-
ing will be large. Thus, this weighted chord distribution that results for the case of a
silhouette object (case B) emphasizes short chords more than long chords. The chord dis-
tribution in case A will be more susceptible to noise in the interior of the object
(internal pixels of value 1 result in many new chords being produced in case A, whereas in
case B zero internal pixels cause a loss of chords but a much lower percent change results
than in case A). When the chord distribution in case A is computed from the autocorrela-
tion or power spectrum (as in Sections 2.1 and 2.2}, it is much simpler to calculate than by
other methods which have great difficulty when applied to a non-continuous boundary. How-
ever, each missing boundary pixel in case A will still result in a loss in the number of
chords counted.

The weighted chord distribution (case B) emphasizes short chords. These correspond
to local object features (whereas long chords correspond to global object features). Since
local object features are useful for discrimination between object classes (inter-class),
we expect the weighted chord distributions to provide superior object discrimination. Long
chords, corresponding to global object features, are more useful for intra-class object
recognition (within one object class, in the face of various object distortions). The per-
formance of weighted chord distribution features in the presence of noise in the input is
expected to be superior to the use of conventional chord features. 1In a boundary image
(case A) with N pixels on the boundary, each noise pixel on the object produces N new
chords and each missing bgundary pixel (due to noise) causes N chords to be removed from
the distribution. With N total chords, each noise pixel thus changes the total h by a
factor 1/N. 1In case B, each weighting function is on the order of N% (this is more true
for short chords than long chords) and thus each noise pixel produces a change in h by a
factor of only 1/N¢ (this is a considerable improvement, since N is usually quite large).
For the same reason that the change in h for short chords is less susceptible to noise, it
will also be less susceptible to small differences in the object's shape (due to distor-
tions). but changes due to sufficiently different objects are still retained.

The dynamic range of the chord features in cases A and B appears to be comparable.
Since use of the boundary image (case A) whitens the image's spectrum and results in a
sharper correlation function compared to the broader correlation pattern that results in
case B, wedge-ring detection in case B is much simpler. Case B is clearly preferable from
noise considerations, its inter-class discrimination is clearly enhanced and its intra-
class recognition should be retained. Since all chords are available (and more easily
detectable in case B), one can use the preferable chord features (short or long, local or
global) for a given problem.

SPIE Vol. 521 Intelligent Robots and Computer Vision (1984)/ 3



If the gray-levels of the object and its internal structure are reliable, then the chord
distribution for the gray-level image ({(case C) is most useful. The distribution in case B
is one level of a general chord distribution. The distribution in case C is a higher-
%evel of generalized chord distribution [4}. In this case, the chord distribution for all
internal chords or internal object points is provided. Algorithms such as (1) with the
@oundary object b(x,y) replaced by the full object f(x,v) provide such features with no
increase in computational load for optical systems (digital systems can achieve simplified
correlations when operating on binary imagery).

3. Scale and Rotation-Invariant Chord Processor

§.l Ipsiqht. The chord pdf h(r) is invariant to in-plane rotation of the object. This
is obvious since the in-plane rotation of an object does not alter its radial distribu-
tion. The chord pdf h(¢) simply shifts with in-plane rowations. This follows directly

since h) (24,2} = h{(rcos8, rsin®) changes to hp(2y,2y) = h(rcos(6+8g), rsin{6+84)] for ro-
tation of the input object by 845, i.e. in (r,68) space, ho(r,08) = hy(r,6 +6g). Thus in-
plane object rotations rotate h(lx,ﬁy) and translate h(8). The chordpdf h(6) is invariant

to scale distortions of the object whereas h{r) scales (rather than shifts) with an input
scale change «. The invariance of h(6) with scale is obvious. For a scale change o in
the input object, the h{r) distribution scales proportional to o and h{ar) is obtained.
As long as half of the correlation plane is sampled in 8 and r, the above remarks remain
valid [due to the symmetry of the autocorrelation and due to the cyclic shift nature of
h(6)]. Table 1 summarizes these properties. ’

Table 1. DProperties of R(r) and h(6) distributions

PARAMETER Feature Distribution Property Amplitude Effects
h(r) Invariant None
Rotation, eo . R
h(s) Shifts meo None
’ -3
h(r) Scales r - or o
Scale,
h(8) Invariant _ o3
h(r) Invariant None
Translation .
h(8) Invariant None

Table 1 also notes the effects on the amplitudes of the h(r) and h(0) features. We
now detail the origin of these variations. We consider first the effect of a scale change
{by a factor of &) in the input object on the amplitudes of h{(r) and h(8). First, we
consider the observation space h(fy,%,). The image f(x,y) with scale a = 1 produces h;.
This relates to hy for o # 1 as detailed below. From (1),

hy (2 . %) = JI flxy) flx + 2,y + zy)dxdy (1)

For the scaled object (scale factor «)

hz(Rx,iy) = J/ flox,ay) flolx + 2 ), oaly + zy)]dXdY (5)
Changing variables (u,v) = (ax,ay), we obtain
2
hzllx,ly) = (1/a%) I7 £(u,v) £lu+ al s V'*ﬂﬂy)dudv = (l/u,)hl(an,aiy).
(6)

, 2, "’
From (6), we see that h2 is a scaled version of h1 with the amplitudes scaled by (1/a”).
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Now we consider the effect of scale changes on the h(r) and h(f) distributions. For
the h(r) distribution, we find, from (2},

h,{r) = [ f(rcosf, rsinb)rdo . (7)

l(
For a scaled object (scale factor o),

hz(r) = (1/a2) /flarcos?d arsinfird6 = (l/a3) Jf(arcosB,orsind)oardd = (l/a3)hl(ar) (8)

Thus, from (7), we find a scale ch@nge (by o) between the h, (r) and h, (r) distributions
and an amplitude scale factor (1/a”). For h(¢), the effect of a scalé change o is simply

_ 3
h2(8) = (1/a )hl(e) ’ (9}
i.e., only an (1/a3) amplitude factor.

The distribution and amplitude effects of 8, and a distortions summarized in Table 1
and detailed above are valid for continuous daga and continuous r and ¢ sampling. Finite r
and & sampling is expected to change the exact results somewhat. Specifically, due to
sampling, an exact ratio of a3 is not expected. Furthermore, the scale change from h(r)
to h{ar) can be quite difficult to uncover since the distribution for one scale may lie
in 11 rings and the distribution for another scale can easily lie in 6 or 8 rings. Thus,
the h(6) distribution is the most useful one for general (o plus ©,) distortions. The h(r)
scale r changes linearly (to or) and is thus not a simple shift. Qhen the effect of a
finite number of r samples is included, the h{r) effect with o is nonlinear. If we scale
the h(r) distribution in r by o, the ratio a3 then exists between the h(r) for a scaled
object and the original h(r) scaled in r by a. Thus, the distribution and amplitude effects
of scale are coupled as just detailed. Specifically, this means that the amplitude ratio
is a3, but it is this for different r and ar points in the distribution (not the same r

points).

By g(x,y) = fluax,ay), we describe both the position and value of the pixels. Specifically
new pixel (x,y) is old pixel (ax,ay) (i.e. o >1 corresponds to a scale decrease) and the
value of the old and new pix&l are the same. OQur above formulae for amplitude effects pro-
portional to a3 thus apply for binary silhduette images (analogous formulae for gray-scale

images can be derived and used if the input data is gray-scale. In such cases, w%th a< 1,
we have a larger image with more pixels and more intensity per pixel, since the ob]ect_ls
closer and xeceived intensity is proportional to range squared). For binary silhouette images

and o <1, the new image is larger. Thus, for a given (xx,zy) shift, we thain more overlap,
larger correlation values, more weighting and more chords. “Our new hp will have larger ampli-

tudes (more chords) than hj and this agrees with h, = a~2hj > hi predicted.

3.2 Distortion - Invariant (¢ and 8p) Pattern Recognition. The insight provided in Sec-
tion 3.1 and the distortilon effects summarized in Table 1 are most useful in devising a new
pattern recognition feature extractor (invariant to scale o and in-plane rotation 8
distortions). We consider 3 distortion cases separately below and summarize our results in
Table 2. From Table 1, we note that the h{8,) distribution is the most useful one in
general (since it provides invariance to sca?e automatically and to rotations if shifted
versions of h(8) are tested; and since the ratio of h(6) and a reference hi(6) provides an
estimate of «, whereas the best shift of h(6) provides an estimate of 60). For only

scale distortions, h{8) is best, and for only rotation distortions, h(r) is best for
classification (since these features are invariant to the indicated distortions).

3.2.1 In-Plane Rotations. For the case when 85 is the only distortion present, we com-
pare the h(r) distribution hgr(r) for all references R. This provides an estimate of the
object class R. Next, for the best reference R (obtained from the h(r) and hg(r) compari-
sons), we compare h(6) and hgr(6) for various shifts 6g in hg(6). From the hr{6 + 0g) and
h(8) comparisons, we obtain a verification of our initial class estimate R and an estimate
of 80. A combination of both h(r) and h(8) tests thus provides the best class R estimates.

3.2.2 Scale Changes. For the case of an r distortion alone, we compare h(8) for the test
input vs, hg(6) for all references R. We must compare h(8) /hr(0) for each 6. ThHe reference
R for which this ratio is constant for all 3 provides the class estimate R. The ratio
h(6)/h,(8) provides an estimate of o also. To confirm our R and a estimates, we form h(r)
and hr(ar) for the initial R and o estimates. Agreement of h(r) and hplar) confirms our
initial estimates. Combining both the h(8) and h(r) tests again yields better estimates.

3.,2.3 Combined Scale (o) and rotatiog# (8q) Distortions. When both a and 85 distortions
are present (the most general case), analysis relies on h(8) and is more complex. We

form h(e)/hR(e + 94) for all R and all shifts fg. When thisratiois constant for all 6,
the corresponding R, o and 6, estimates are obtained. The ratio provides the & estimate.
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Table 2 Scale o and In-Plane Rotation 80 Invariant Multi-Class Pattern Recognition

CASE Procedure Remarks ) Results
(R) Compare h(r) and hR(r) h(r) is Rotation Invariant Class R Estimate
Rotation :
8. Only Compare h_(6 + 6.) and h(0) h(¢) shifts with 6 Confirms R
N R 0 0 ;
. Estimate
Provides 90
Estimate
(B) Compare h(e)/hR(e) : Constant Ratio Provides R Class R and
Scale for each 6 Ratio Provides o Estimate Scale o
Estimates
a only
' Compare h(r)/hR(ar) Confirms above estimate Confirms R and o
Estimates
(C) Compare h(e)/hR(e + eo) Constant Ratio Provides Initial Esti-
Rotation 60 for all R and all shifts 60 R and 60. Ratio gives a mates of
. . R, 90, a
and Scale a
Compare h(r)/hR(ar) Confirm above Estimates Confirm R and o
Estimates

As a'check, we form h{r)/hg{or) for the initial R and o estimates. From the constancy

of the ratio, we verify our R and o estimates. Forming h(r)/hgr(cr} initially for all a,
is more computationally intensive and thus the ordeL chosen appears best. This is also the
most general case.

4. Out-0Of-Plane Distortions 90

For a and © distortions, we require one h(r) and h(#) distribution per class R for our
training set. To accommodate out-of-plane distortions ¢ , we use several training set
images per object class and from all h(r) and h(6) features select those with the largest
Fisher ratio F (from training set data). We then form a linear discriminant functions w
that maximizes F for a multi-class feature set. BAn input test feature vector ¢ (chord
distribution) is projected onto w and the projection value determines the lnput object
class. This algorithm [4] has demonstrated perfect performance in selected image distor-
tion tests.

5. Summary.

Chord distributions h(r) and h(6) have been shown to be easily computed from the
autocorrelation of the input object and WRD (radial and angular) sampling. Using the
various properties (Table 1) of h(r) and h(8), a new multi-class pattern recognition
system for scale and in-plane rotational distortions was advanced (Table 2). Combined
with our prior out-of-plane rotational distortion work (Section 4), this feature space
can provide full 3-D object distortion invariance and estlmates of the distortion para-
meters (orientation and scale) of the object.
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3-D OBJECT RECOGNITION FROM A SINGLE IMAGE

Fernand S, Cohen
Jean-Francois P, Cayula

Department of Electrial Engineering
University of Rhode Island, Kingston, Rhode Island 02881

Abstract

A conceptuslly new algorithm for 3-D object recognition and shape estimation from a single image is
presented. Here ocomplex 3-D objects are viewed as concatenation of simple svrfaces, essentially planar,
cylindrical, and spheriesl. This paper addresses the problem of recognizing these different surfaces along
with estimating their shape parameters from a single image. The surfaces are assumed to be Lambertian
illuminated with a poimt source at infinity, and we allow more than one surface to exist in the image,
Surface classification and recognition relies om exploiting the contours of oconstant image intensity
associated with esch surface. By Lambert’s law the image intensity for a plane is just a constant; for s
cylinder the contours are lines parallel to the axis of the cylinder, whereas for a sphere they are concentric
circles (ellipses). The image is partitioned into small square blocks. In each the data patch could either
be classified as planar or nonplanar (cylindrical). That involves looking at whether or not the ratio of the
2 eigonvalues of the scatter matrix associated with the contours is close to 1. For nonplamar (cylindrical)
blocks the angle O associated with the direction of the lines is computed, Any nonplanar block is classified
88 cylinder or sphere by considering the distribution of the angles O in a 3x3 neighborhood centered around
the block. Again based on the classification of the blocks (surface type) as well as their directiom (0), the
image is segmented into conmected regions. Once a surface regiom is extracted, shape estimation is achieved.

1. Introduction

Pioneoring work on the inference of shape from shading was done by Horn and his co-workers [1,2,3]. They
have used the reflectance map, which shows sceme radiance as a function of the surface gradient and the
distribution of 1light sources, to extract 3-D surface information from image data. Their work is a
conceptually basic and extremely important approach to scenme understanding, but unfortunately is not directly
applicable to the robot vision problem which imposes the. demands of real-time processing and the ability to
handle very noisy, highly variable image data. Cooper and his co-workers [4,5] nicely bypassed that problem
by modelling the surface image by 2D quadric polynomial where the approximation is constrained by the 3-D
object surface shape. An asymptotically Bayesian classifier is then used for classifying a patch of the image
into one of the cendidate surfaces. It is assumed here that the patch is a piece of a single surface. Once s
patch is classified the 3-D surface shape parameters location and orientation are estimated by fitting lines
and ellipses to thresholded data.Because of the polynomial representation and curve fittimg, the 3-D surface
recognition and estimation problem is computationally simple and applicable to noisy data. Haralick and his
covorkers [6] also considered the problem of estimating shape from shading using the Facet approach. In the
single image case the problem was formulated as 2 nonlinear optimization problem which may result in multiple

solutions and ambiguous result.

This paper presents a new approach on 3D part recognition and shape estimation from a single image whore
the contours of constant image intensity are exploited and used for both surface classification segmentation
as well as for shape estimation, As a significant percentsge of manufactured parts cam be approximated by a
concatenation of simple surfaces [7], such as planes, cylinders, and spheres, we concentrate here on the
problem of classifying and estimating the shape of these surfaces from a single image. We assumo that the 3-D
surfaces are Lambertian illuminated by a point source at infinity. As any robot vision problem requires real-
time processing, the image is partitioned into small square windows or blocks, that could be processed in
parallel with appropriste axchitecture. Locally (on the block level), the block is classified as planar or
nonplanar depending on whether or mot the contours of constant image intensity are parallel lines. This is
followed by a classification of a nomplansr block into cylimder or sphere depending on bow the contours
directions presented by an angle O vary from onme block to the next on a finite meighborhood. Again as the
neighborhood is finite, all nonmplanar blocks could be processed in parallel with simple appropriate
architecture. : :

This papor makes the following contributions:

1) The total amount of computation required for classifying a block into plamar, cylinder, or spherical is
essentially that for classifying a block into a planar or nonplanar and is of the order of N? additions (see
Appendix B) for a NxN block. This is due to the fact that the decision involved in classifying a nonplanmar
block does not involve the data in each block im the neighborhood, but rather depends on the 8-distributionm im
the block neighborhood, and there the computation involved is very small;

2) only the nature of the contours are to be exploited for classification of a single surface patch, as
well as for shape estimation. This is achieved at no reasl added amount of computation, In contrast, as
montioned im [4] it is impossible to extract all the 3-D sunrface location and orientation from a single 3-D
surface location snd orientation from a simgle 2-D quadric polynomial approximstion to an image patch, only
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single surface classification is possible. Once a patch is classified, then shape estimation is carried
through fitting lines and ellipses to thresholded data as explained in [5,8];

3) blocks of small size (16x16) sre still classified correctly because we exploit the local as well as the
global structure. This has an immediate influence on the processing time when the algorithm is implemented in
hardware. Again as no global structure is exploited in [4], the window has to be big emough so that locally a
spherical patch doesn’'t look like & cylindrical or plamar patch, and a cylindrical patch doesn’t look like a
plane (see sectiom (3.2, 3.3); .

4) the same approach is extendable for the case where the image has mixed surfaces. As in the single
surfsce patch case, a block is classified by exploiting the local as well as the global structure. By adding
the natural constraint that regions that correspond to the same surface are connected, and that the contours
vary smoothly we can easily cluster the blocks into connected regions of the same surface type;

5) the paper shades on the importance of image contours as an efficient way for modelling, coding, and

synthesizing images of 3-D manufactured parts (see Appendix B).
Finally we should emphasize that when the assumption about the 3-D surface being Lambertian, or the
illumination being a point source is not met, the spproach developed in this paper appears to be robust.
Object boundary and edge detection should be incorporated in the segmemtation process and will prove to solve
the problem that the segmentation algorithm in the present form can’t solve (see section 7). The same
approach can also be applied to cones (the incorporationm of boundary informatiom and the spproach applied to
cones are trested in s forthcoming paper).

2. Image formation and image comtours

The assumption here is that 3-D surfaces are essentially Lambertian and are illuminated by a point source
at infinity. The 3-D structuroe of the different surfaces are inferred from a single 2-D image by exploring
and modelling the contours of constant image intensity associated with each surface. By Lambert’s law, the

image intensity of a poimt in the image space is givenm by

I =1, cos @ (1)
® = Angle between normal to the surface

at a given point and the incident ray,
C = a measure of surface reflectance camera

to surface distance.

From (1) we can easily see that for a planar surface I is just a constant. For a cylindrical sarface one can
show [5,8] that the contours of constant image intensity are straight lines parallel to the cylindor axis,
whereas for a spherical surface they are concentric sllipses with constant minor—to-mejor axis ratio. The
center of the sphere lies on a line joining the ellipses centers.

3. Surface recognition —— the classification problem

3.1 Overview

If the image comsists of a1 single surface patch, then surface recognition and shape estimation is achieved
by first classifying the patch, and them e¢stimating the parameters of the surface wusing the patch data.
Surface patch classification is achieved by first dividing the image into small windows or blocks that could
be processed in parallel with appropriste architecture to achieve speed. On the window level (i.e. locally)
the patch in each vindow can only be classified as cylinder or plane depending om whether or mot the contonrs
of constant image intensity are parallel lines. The reason it is impossible locally to differemtiate between
8 sphorical patch and a cylindricel patch is that locally the elliptic (circular) contours lcok like parallel
lines. Globally (i.e., by considering 21l the windows), however, this could be achieved by moting that for a
cylinder the angle of orientation of the limes © will be the same in sll the windows, whereas for a sphere it
will vary smoothly from ~90° to 90° along the elliptic (circular) conmtours. Any window (i,j) is claessified as
being a cylinder or a sphere depending on whether the O-distributionm on & 3 x 3 neighborhood centered about
(i,j) is more conmsistent with a O-distribution of a sphere or a cylinder. We consider s finite number of
most likely masks for the sphere and the cylinder, A penalizing function (cost) cost(i.j'clas:) based on a
distsnce measure (in the 6-space) is computed on the 3x3 neighborhood, snd the window is classified sccording
to a least cost decision rule.

The imsge is first classified as a plansr or nonplanar surface (cylindrical or spherical). This step
relies on a wajority rule decision, that is, if the majority of the windows are classified as planar, and
since we know we are dealing with a single surface patch, then the whole image patch is classified as planar,
snd vice versa. If the patch is classified as nonplanar, we compute the total cost associated with all the
blocks that are classified as cylinders under cylindrical surface assumption, and compare it to that under the
sphorical assumption.

3.2 Block-classification——1local information

Block classification into planar or nonplanar surface depends on whether the patch dats is essentially a
constant, or whether the contours of constant image intensity are parallel lines, In order to detect that we
use a combination of constrained line fitting and scatter matrix analysis simjlar to that used in [5,9]. The
basic idea is to pick a pair of thresholds, and look at the pixels with image intensity falling in (a,B) as a
dats set D,g = {(4,j): n(Xij<B} (with X;j; being the image intensity of pixel (i,j). This data set
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1

>resn

constitutes a contour caB of constant image intensity. Next we form the scatter matrix S

Nk . Nk
S.= ) (U, -0 ) (0 -0 )%, U = (,§), U=g ) v (2)
x Py ey’ v Py (A i
(1.,1)3!)“ﬁ (x.j)sDuB
and compute its 2 ejgenvalues and corresponding eigemvectors, If 2y 2>y, this implies that the data lies on

8 line with slope given by the orientation of the eigenvector associated Ay, However, if A; and A, are
comparable, this means that the data lies more on a plane than on a line., We have also allowed for & third
class (undefined) to account for the case where the cloud doesn’t have a pronounced direction. The undefined
blocks will be reclassified when considering neighboring blocks. When the block is classified as cylinder the
angle © of orientation of the c¢ylinder axis is obtained by computing the orientation of the biggest
eigenvector. The angle © has been quantized to 8 levels: 909, 65°, 45°, 200, 0°, -20°, -45°, -65°,

There are obvious problems sssociated with arbitrarily picking the thresholds. If we plot the intensity

versus the distance for s cylindrical patch in a direction perpendicular to the cylinder axis for most of the
source directions the function is monlinear. The loci is that of an ellipse {8]. An example is shown in
Figure 1 , where the cylinder is assumed to be in the (x,y) plane, and the 1light source in the (y,z) plane but
far away from the object. Now if we arbitrarily pick two thresholds (a,B)
(a-$=A), then we might wind up with a data set (in the interval 84) which form a data clond which is too wide.
Consequently, the eigenvalues of the scatter matrix will be comparable, and the patch will be inmcorrectly
classified as plane, A way ground that is to consider an interval & which is far removed from the maximum
image intensity contour. This has the effect of avoiding the highest curvature region where the contours of
constant image intensity are wide (i.e., consider data in 6, instead of &1). Though this solves the problem
for the ¢ylinder, it has its drawbacks vwhen dealing with a plane. When dealing with real objects, the image
intensity for s planar surface is never constant. An appreciable amount of mnoise is superimposed om the
image and it is seldom the case that the noise is white. This means that when the thresholds are removed from
the highest image intensity region, we are essentially amplifying the effect of the moise, and if it happens
that the noise has a favored direction (nonwhite) there, we might end up with the misclassification of a
plane, A natural solution, therefore, is to consider more than one interval and form the total scatter
matrix. Each such interval shomld have a minimum predefined number of pixels so that the direction of the
cloud is well defined.

3.3 Nonuwniform histogramming

The gray scale image is first normalized, amd the gray levels are mapped onto a (0 to 64) or (0 to 128)
scale., Then the image is partitiomed into 16x16 squares, and a Listogram is computed for ecach window, Lot
n(i) be the number of pixels with gray level I (i.s., histogram value of the interval (I-1,I)), and let N be
the area onder the histogram corve. N here is a discrete variable which can take the valuwes of 0,...,,256 for
a 16x16 window and serves to control the width of the stripes. We fix N and subdivide the grsy level scale (0
to 127) into intervals, each of which has an area of at least N. Let’'s assume that we have M (M can take
1,...,128)such intervals denoted by {(sy.fy)), I =1, ...M. Here s; and f; denote the starting and ending
point of the interval with sy = 0, and sy = fy -1. The next fy should steisfy the following inequalities

£y £,-1
I n(§j) 2N, and T a(jX<N, (3)
iji-= sy ji= $;

and is picked accoxdingly.

This procedure is repeated until all the pixels are assigned to the intervals. For each interval (s .fI) the
coordinetes of the points ((i,j)} which have an image intensity within the (sI,fI) interval form a data cloud.
We compute the scatter matrix associated with the data for each cloud and sum all the scatter matrices to form
the total scatter matrix S

M
$=3 S, £y

I=1
and compute the eigenvalues and eigenvectors of S, Block classification is them beased on the ratio of the
eigenvaluoes of S. The advantage of superimposing clouds is shown im Figure 2. Each arrow represents the
eigenvector associated with the largest eigenvalue for each cloud. For a plane (Figure 2a) the eigemvectors
are distributed randomly in the (x,y) plane, whereas for a cylinder, they are clustered is a small portion of
{z,y) plane (Figure 2b). This meens the superposition of the eigenvectors for the plane leads to a resultant
eigenvector that lies anywhere within a sphere of radius r_ (Figure 2c), whereas for s cylinder the resultanmt
eigenvector has a large magnitude (much bigger than ’of and a definite direction (Fig.2b). It follows
therefore that basing the decision using superimposed cloeds is far more reliable than just using only one
cloud (interval). Finally we should mnote that computing the orientation of the eigenvector associated with
the biggest ocigenvalue of S is exactly similar to MSE comstrained line fitting.
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3.4 Global information and cost computation

3.4.1 Global information Up to that point all the blocks are classified as cylinders, undefined or planes.
The next stage is to classify each nonplanar block as a cylindrical surface, a spherical surface, or nndefined
depending on how neighboring blocks have been classified and depending on the angle © in each cylindrical
block in the neighborhood. Here undefined means that the cost incurred under cylinder assumption is the same
as under sphere, For speed we limit ourselves to a 3 x 3 neighborhood centered about the block to be
classified. The pattern observed is matched with predefined templates for the sphere and the cylinder. A
penalizing (cost) function is computed for ecach match and the best match is determined based on a minimum cost
decision rule. For a cylindrical surface the angle 8 shoyld ideally be the same im all blocks in the 3x3
aeigbborhood. Heace for the cylindrical case we match the observed patternm to the following template.

() ) ()
[:] [:] "] © is the angle most often foumd in the
[} ] 0 3x3 windovw.

For a sphere, the angle € will vary smoothly from ~909 to 90° along the elliptic (circulsr) contours. We have
considered a set of 16 templates to account for the most likely patterns encounterd for a spherical surface
(see Appendix A op the choice of these templates). The templates are depicted in Figure 4 for the case
where the point source is on top of the sphere — - hence circular image contours. A cost is computed for each
match of the observed pattern with each one of the 16 templates. The least cost is them compared to that for
the cylindrical surface and the block is classified according to a least cost decision., Note that we can
compute the cost associated with all the blocks at the same time with special purpose hardware, In the 3x3
neighborhood if some of the blocks are missing or have been classified as plane or undefined they doa't
contribute in the cost computation,

3.4.2 Cost Computation The cost is computed based on a distance measure in the O-space. Any block in the
3x3 neighborhood is matched with its corresponding one in the template. If the angles are the same, no cost
is incurred. Otherwise, a cost proportionsl to how many quantization levels espart the two angles are, is
incurred, The justification for that measure is that for a spherical surface, & changes smoothly from one
block to a neighboring one and is therefore not likely to be very differont from the block at the center.
This is even more so when dealing with a cylinder. To illustrate the idea, compute the cost incurred when we
match the pattern in (a) with the template in (b). The cost incurred in each block is given in (c)

20°1 UND 20%} 20°1 20°
_200 0 00 _200 oo 0°
- =20° -20°(-45° -20°[-20° |-65°
{a) b)
pattern template
0 0 (1]
0 0 0 Total cost = 1
0 0 1
(c)

3.5 Classification of a nonplanar single surface patch

If an image of a single surface is classified as nonplanar (i.e., most of the blocks are classified as
nonplanar), then the patch is classified as cylinder or sphere by computing the total cost associated with all
the blocks uwnder cylinder assumption and comparing it to that under the sphere assumption.

cylinder

} cost (i,jICyle nax)z } cost (i,jl spﬁete) (5)

(i,})eC sphere  (; iyec

and [}

max it the angle most accounted for within

€Yl gugay denctes that cylinder with orientation angle O, .,
the blocks classified as cylinders (C).

3.6 Magnification problem

There is a problem associated with using fixed masks when classifying monplanar blocks into either
cylinders or spheres: the masks are not magnification invariant. This means that if the sphere size is large
compared to the block size as shows in Figure , them the blocks that are far removed from the center of the
sphere might be classified as cylinders. This is due to the fact that the bandwidth of the contours is big

and therefore any block based ss 3x3 neighborhood will look like a oylinder. One way of remeding this problem
is to consider a larger neighborhood, but this has the disadvantage of slowing down the process. An
alternative is to use a "blown-up” mask configuration as shown below.
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