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PREFACE

This book consists of a ser% ofntables rll,lseful for theoretical
studies of atoms and ions inp , d , and f configurations. In
a series of papers appearing between 1942 and 1949, Racah
systematized the analysis of the energy levels of atoms and in-
troduced methods that supplemented the earlier work of Slater
so useful for the analysis of the energy levels of the lighter
atoms., Using Racah's methods, one can find closed expressions
for the matrix elements of operators with known transformation
properties and for the matrices determining the energy levels
of ions in the £ configurations. Involved in these expressions,
there occur quantities that, if tabulated, greatly facilitate the
evaluation of matrix elements, Of these the Clebsch-Gordan
coefficients (or the related 3-j symbols), Racah W coefficients
(or the related 6-j symbols), and the coefficients of fractional
parentage play a central role. The first two of these three sets
of coefficients are already well tabulated. There is the recent
excellent tabulation by Manuel Rotenberg, R. Bivins, N,
Metropolis, and John K. Wooten, Jr. in their book The 3-j and
6-j Symbols (Technology Press, Cambridge, Mass., 1959).
The coefficients of fractional parentage hich relate the states
of an 0" configuration to those of an { "7 (its "parent'), are
ngt tabulr:;lted as thoroughly. They exist in Racah'snpapers for
p and d° configurations and are analyzed for the f configura-
tions in these papers. Thisnset of tables contains the coefficients
of fractional parentage for f configurations,

In addition to these three sets of coefficients, there are alge-
braic combinations of them that occur with sufficient frequency
to warrant tabulation, These occur in the calculation of matrix
elements of tensor operators and are the so-called '""reduced
matrix elements." Some of the more useful of these are also
included in this tabulation.

The authors wish to express their appreciation for fruitful
discussions with Dr. P, Nutter, Dr. A. Runciman, Dr. A. D.
Pierce, Prof. J. C. Slater, and members of the Solid State and
Molecular Theory Group at M.1. T. The computations were done
at the M, I. T. Cooperative Computing Laboratory and were sup-
ported by the Office of Naval Research and the National Science
Foundation.

Cambridge, Massachusetts C. W, Nielson
October, 1963 George F. Koster



INTRODUCTION

Many problems of atomic structure with applications in chemical and
solid-state physics can be most efficiently solved by means of the tensor-
operator methods originated by Racah, Several descriptions of these
methods have been published recently,’”® In order to use the methods,
certain mathematical quantities are required, notably reduced matrix
elements for standard configurations and 3-j and 6-j symbols. Rather
comprehensive coverage of 3-j and 6-j symbols is given in the tabula-
tion by Rotenberg et, al.® The present book presents reduced matrix
elements and related quantities for all possible configurations of equiv-
alent p, d, and f electrons. Part of the material is a recalculation of
results already available in the literature,*”"'* but most of the results
on f electrons are new. This introduction contains only sufficient in-
formation to identify accurately the contents of the tables. For infor-
mation concerning the use and significance of these quantities, the read-
er is referred to the previously mentioned books.

Classification of States

Throughout this work, atomic states are considered to be constructed
by L-S coupling. This coupling scheme is convenient for the tensor-
operator methods and is conventionally used. Because more than one
multiplet of a given L, S may occur, some further differentiation of the
multiplets is required. For this purpose we have followed consistently
the classification scheme of Racah® wherein additional quantum numbers,
usually not of physical significance, are introduced by reference to the
properties of certain mathematical groups. Specifically, the groups
used are those denoted by R, in the case of the configurations d and by
R, and G, for the configurations f%. The so-called seniority quantum
number is consistent with this scheme, Even with these additional
quantum numbers, some duplications occur for f® configurations, which
were resolved arbitrarily by Racah in his work on the electrostatic en-
ergy of % configurations.®

The present tabulations are totally consistent with all of these choices,
although the special quantum numbers themselves are actually printed
only once, To identify matrix elements more compactly, a label is
given to each multiplet, consisting of the multiplicity followed by the
letter representation of the orbital angular momentum. When more
than one multiplet of a particular multiplicity and orbital angular mo-
mentum occur, each is assigned a final sequential index. The exact
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correspondence between this label and the Racah quantum numbers is
given in the listing of states at the beginning of the tables. The config-
urations p® do not require any extra quantum numbers. The listings of
d™ states give the label, the seniority number, and the R, representa-
tion symbol, in that order., The listings of f states give the label, the
seniority, the R, representation symbol, and finally the G, representa-
tion symbol, Thereafter, only the label, comprising multiplicity, or-
bital angular momentum, and perhaps a sequential index, is used in the
tables. For most applications, the explicit Racah quantum numbers are
not required.

Fractional Parentage C oefficients

Fractional parentage coefficients were introduced by Racah’ to facili-
tate computation of matrix elements for complicated configurations.
‘"They are important because all antisymmetric states of n electrons can
be expressed as linear combinations of the states obtained by angular-
momentum coupling one additional electron to the antisymmetric states
of n-1 electrons., The coefficients of these linear combinations are the
fractional parentage coefficients.

Racah has shown that fractional parentage coefficients can be factored
if the states to which they refer correspond to his special group theoret-
ical classification scheme; he calculated many of the factors needed for
- configurations.® These factors and all others needed were newly com-
puted13 and assembled to give the complete set of fractional parentage
coefficients in this book., In the tabulation, the first column specifies
the final state, while the second gives the parent state. The fractional
parentage coefficient connecting the two follows in powers-of-primes
form. Zero coefficients are omitted completely from this section.

Electrostatic Matrix Elements

The electrostatic interaction energy for a configuration Qn is usually
specified in terms of the Slater F integrals"‘ and is so specified here
for the configurations p™ and d”. For configurations f%, Racah® intro-
duced linear combinations of the FX integrals which prove to be con-
venient and which are used in the present tabulation:

trlo
"

F° - 2F%45 - F%33 - 50F%1287
= 14F%405 + TFY297 + 350F% 11583
E? = F%/2025 - F¥3267 + 175F% 1656369
E? = F%/135 + 2F% 1089 - 175F%42471

tL
I
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Since the matrix is symmetric, only the upper diagonal half is given,
Elements not diagonal in L, and S are zero and are omitted from the
tables,

These electrostatic matrix elements were calculated in a recursive
manner starting with those of the ¢* configuration and operating on them
with a formula derived by Racah!’ until the maximum configurations
were reached. In this way the electrostatic energy matrix is assured
of referring to states with the same phase conventions as the fractional
parentage coefficients and other quantities calculated from them. In
actual practice, this correspondence was sometimes used in reverse to
specify the phase of new fractional parentage coefficients so as to give
ultimate agreement with previously published electrostatic matrix el-
ements,

Reduced Matrix Elements

The exact definition for reduced matrix element used here is such
that the actual matrix element

K 1 '
(L,MITQIL , M")

of the tensor operator TK between initial state L, M and final state L',K M'
and the corresponding reduced matrix element (LHTK"L') are related by
the equation

(L, M]Tg|L', M') = (-l)L‘M<_I;V{ g I\i.)(LHTKHL')

where

<L K L'

-M QM

is the Wigner 3-j symbol. Racah introduced unit tensor opera.tors16 in
terms of which other tensor operators may be expressed, and the reduced
matrix elements for the unit tensor operators Uz, U3, uf, U, U6, and
V!l are tabulated here for the configurations pn, d", and f. The re-
duced matrix element of a tensor operator is zero unless a triangle can
be formed with the three angular momenta 1., K, and L', and cases not
fulfilling this condition are not listed at all. However, all other zeros

are listed explicitly. Only the upper diagonal half of a matrix is given;
the reflected elements are found from the equations

(a'S'L'|UKJasL) = (-nL'-L(asL|uK|a's'L)

(a'S'L'||[VIK|asLy = (- L' -L4S'-S » (ars|v K |arsr Ly
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All of these reduced matrix elements were calculated from fractional
parentage coefficients and 6-j symbols using a formula from Racah.!?
This procedure assures complete consistency among the fractional
parentage coefficients, electrostatic matrix elements, and the reduced
matrix elements.’®

Almost Closed Shells

With each state of £° there is associated a state of 242+2-n that has
the same quantum numbers,!®!? Simple relationships exist between these
two configurations, called conjugate configurations,

If the fractional parentage coefficient relating the o'S'L' state of gn+l
to the aSL state of £ is denoted by

FtlesLr; 2%esL)
then

F(242+2_naSL; £4£+l—na|sl Li)

1
- g (-1)SHSHLAL -L-F | (o + 1)@2S' + DL' +1) |2
(40 + 2 - n)(2S + D(2L + 1)

x F(f™las L, 1%esL)

1
where { is unity unless n=2¢, Forn=2{, { = (-l)v'—i, where v'
is the seniority number associated with «'S'L', The various sign factors
are ultimately arbitrary, but they are not independent of other sign con-
ventions that have already been assumed and must therefore be used.?
The electrostatic energy matrices for conjugate configurations are
identical except for the addition of a constant diagonal term.
The unit tensor operator reduced matrix elements for conjugate states
are the same up to a sign factor:’

(aSL|UK(40 + 2 - n)f|ars'Lt) = (- D¥(esLl|uB(m) lo's'L1)
(aSLIVIE(4L + 2 - n)]la's'LY) = (- )¥(asL|| VE(n)|la's'L")

Number Representation

Fractional parentage coefficients and reduced matrix elements are
presented in a powers-of-primes representation consisting of twelve
signed integers:
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a, a; ap a, a, ag @y a7 a3 a9 3, ap
,

These integers represent the real number

1
11 2
a.
ao( T » ‘)
i=1

where Pi is the ith prime. The first eleven primes are 2, 3, 5, 7, 11,
13, 17, 19, 23, 29, 31. In order to limit the powers to one printed
column, the letters A, B, C, * -+ are used to denote the rarely oc-
curing powers 10, 11, 12, - -+, Zeros to the right in the array are
omitted. As an example,

-37 =2 1 -1
represents the quantity
37, 503
10 (15)

Electrostatic energy matrix elements are not given in powers-of-
primes form because each such element comprises several terms, and
it is convenient to use a notation sufficiently compact to present all
terms on one line, To this end, something like ordinary algebraic
notation is used, with the convention that the square root of a number
is indicated by enclosing the number in parentheses. Thus

-12(429)E3/ 11

represents

72 1
-— {4 2 3
“( 29)¢ E

Pr ggcramming Procedures

In order to reduce the possibility of error to a minimum, the tables
were generated in an almost completely automatic manner with a digital
computer. The powers-of-primes method was usecd in the computer
itself for all computations, Coded lists of the states corresponding to
each configuration were prepared by hand, Computer programs, using
these lists as a guide, then generated all quantities here tabulated. A
supervisory program concurrently composed the results into page form,
adding headings and page numbering. When a page was completed, it
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was written onto magnetic tape. The entire book was prepared twice
in this way, and the tapes compared, thus eliminating random errors
from the results., Finally one of the tapes was printed on a line printer
equipped with both tape checking and print-wheel checking devices.
The printer output was then photographically reproduced.
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