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Wavelet Analysis and
Its Applications

The subject of wavelet analysis has recently drawn a great deal of atten-
tion from mathematical scientists in various disciplines. It is creating a
common link between mathematicians, physicists, and electrical engineers.
This book series will consist of both monographs and edited volumes on the
theory and applications of this rapidly developing subject. Its objective is
to meet the needs of academic, industrial, and governmental researchers,
as well as to provide instructional material for teaching at both the under-
graduate and graduate levels.

Among the attractive features of wavelet analysis is the computational
aspect of the subject. In particular, computation of the discrete wavelet
transform can be accomplished by filter bank algorithms in subband coding.
This eighth volume of the series is an elementary treatise of the subject of
multirate, including the detailed discussion of filter banks and their lattice
structures, as well as an application of multirate to wavelet implementation.

The series editor would like to congratulate the author for an insightful
presentation of an important area in wavelet analysis.

This is a volume in )
WAVELET ANALYSIS AND ITS APPLICATIONS

CHARLES K. CHUI, SERIES EDITOR

A list of titles in this series appears at the end of this volume.
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Preface

The field of multirate and wavelet signal processing finds applications in
speech and image compression, the digital audio and digital video indus-
tries, adaptive signal processing, and in many other applications.

The utilization of multirate techniques is becoming an indispensable
tool of the electrical engineering profession. This point can be illustrated in
three ways. First, if a performance specification is controlling the design of
a particular system, that is, the performance specification exceeds the cur-
rent state-of-art, then by converting the system to a multirate system, the
overall system specification can be met with slower components. Secondly,
if the dollar cost specification is controlling the design of a particular sys-
tem, that is, the design of a competitive commercial system where bottom
line cost is most important, then by converting the system to a multirate
system, the overall system cost will be reduced through the utilization of
slower, cheaper devices. Thirdly, if power consumption is controlling the
design of a particular system, that is, the design of a hand-held system
powered by a couple AA batteries, or possibly a satellite system, then by
converting the system to a multirate system will reduce power consump-
tion through the utilization of devices with slower switching speed, and as
a result, lower power dissipation.

Wavelet transforms are closely related to filter banks. As such, a back-
ground in filter banks will make it easier for the reader to understand,
design, and implement wavelet transforms.

Many of the most important applications, such as video compression,
and many challenging research problems are in the area of multidimensional
multirate. As such, multidimensional multirate is integrated throughout
the book.

The focus of this book is to present a sound theoretical foundation by
emphasizing the general principles of multirate. This book is self-contained
for readers who have some prior exposure to linear algebra (at the level of
Horn and Johnson’s Matrix Analysis) and multidimensional signal process-
ing (at the level of Lim’s Two-Dimensional Signal and Image Processing
or Dudgeon and Mersereau’s Multidimensional Digital Signal Processing).
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Xii Preface

Moreover, this text will bring the reader to a point where he/she can read,
understand, and appreciate the vast multirate literature.

The organization of this book is as follows. The first two chapters are de-
voted to basic multirate ideas including decimators, expanders, polyphase
notation, etc. This presentation is first given for one-dimensional signals
in Chapter 1 and then generalized to multidimensional signals in Chapter
2. The next two chapters deal with filter banks. Chapter 3 presents the
theory of filter banks for both one-dimensional and multidimensional sig-
nals. Chapter 4 deals with lattice structures, an efficient implementation
strategy for filter banks. Chapter 5 highlights an important application of
multirate — the implementation of wavelets.

I would also like to take this opportunity to thank Professor Charles
Chui for his enthusiasm about this project and for including this text in
his distinguished wavelet series. The following people have provided very
useful feedback during the writing of this book. They include: Bill Cowan,
Tom Foltz, Jerry Gerace, Ying Huang, You Jang, Matt Kabrisky, Mark
Oxley, Robert Parks, Juan Vasquez, and Dan Zahirniak.

Fairborn, Ohio Bruce W. Suter
February 9, 1997
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Chapter 1

Multirate Signal Processing

1.1 Introduction

This chapter provides the basic concepts used in the study of multirate and
wavelet signal processing. Some of the earliest contributions to the study of
the fundamentals of multirate were due to Schafer and Rabiner[40], Meyer
and Burrus(32], Oetken et al.[37], and Crochiere and Rabiner(10]. The idea
of polyphase representation is a key concept throughout the development of
this book. This nontrivial idea was first articulated by Bellanger et al.[3].
Much more recently, Evangalista[17] carefully examined another important
idea — digital comb filters.

Many of the concepts developed in this chapter are also discussed in
the other multirate texts by Crochiere and Rabiner[11], Fliege[19], Strang
and Nguyen[46] and Vaidyanathan(49].

Section 1.2 presents a framework for multirate and it introduces two
important representations for discrete signals. Section 1.3 introduces the
basic building blocks. Section 1.4 provides ways to interchange the basic
building blocks. Section 1.5 presents a filter bank example.

1.2 Foundations of multirate

First we will examine some sampling considerations and then present some
basic transforms for analyzing signals.

1.2.1 Sampling considerations

Multirate is the study of time-varying systems. As such, the sampling
rate will change at various points in time in an implementation. This will
require us to vary the gain (magnitude) of filters in series with the time-
varying building blocks so that the resulting gain is consistent with what
one would expect if the sampling interval after the time-varying block had

1



2 Chapter 1 Multirate Signal Processing

been the original sampled frequency. Towards this end, let us analyze a
train of impulses.

Theorem 1.2.1.1. Yoo 6(t—kT) = 530 exp(£25™),

Proof: Let us expand y ;. __ 6(t— kT) in a Fourier series. So,

0

k=—-00 m=-—-o0

where,

a(m) = /ELE: 5(t - kT)

J2mrnt
- di

or equivalently,

=1 i /g 5(t — kT) LA
= T = _% exp T .

Let 7 =t — kT. Then,

= b 5[5 oy (2R

k—-oo

We recognize this as a sum of integrals with adjoining limits and simplify
to

Hence,

- 1 & j2wmt
D S-kT) =5 > exp< T )
k=—oc m=-—oo

n
Let F denote the Fourier transform. So that if z(¢) is a signal, then

x
Flz(t)] = / z(t) exp(—j2n ft)dt
-
Let us examine the Fourier transform of an impulse train.

Theorem 1.2.1.2. F (300 6(t—kT)] =250 _ _6(f - B).
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Proof: From the previous theorem,

bl 1 > j2mmt
Y -k =2 D exp( = )
k=—-00 m=—00
Therefore,
F[Eri-b(t~-kT)] = f[% e — o eXP(5)]
= f_ m___ooexp('jz’jﬂ—mt)exp(—j%rtf)dt

= :3r . f_oo exp [~j2mt (f —~ B)] dt
%’— 2::—006(f - L’}’l)

u

Now, performing the Fourier transform of a sum of the product of the

input z(t) and Dirac delta functions, which can be expressed as the convo-
lution of the corresponding functions, produces

f[zk——oo ) (t_kT)] = f—oo f f)TZk_—oo‘s( I_%) df’
= TZk:—oof—ooX(f_f)g(f —'%
= T XieX(f-7)

At this point, we will interpret these results for linear time-varying systems.
If the sampling interval is increased by an integer factor of M, where M > 1,
then the magnitude of the Fourier transform will need to be decreased by
a factor of ﬁ to reconstruct the original system, that is

[e <] 1 (oo}

f[z z(t)8 (t—kMT)} T (f—m>
k=—oc k=-o00

Similarly, if the sampling interval is decreased by an integer factor of L,

where L > 1, then the magnitude of the Fourier transform will need to be

increased by a factor of L to reconstruct the original signal, that is

S E5(-4)

k=—o00 k——oo

1.2.2 Sampled signals

For completeness, the definition of ztransforms and the discrete Fourier
transforms will be presented. Then, we will present two sampled signal
representations: the modulation representation and the polyphase repre-
sentation. The theory of multirate and wavelet signal processing utilizes
both of these representations
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1.2.2.1 2Transforms

Definition 1.2.2.1. The z-transform of a sequence z(n) is defined by

x

X(2)= Z[z(n)] = Z z(n)z"".

n=-—-0o00
An important property of z-transformsis the following scaling theorem.

Theorem 1.2.2.1. If the z-transform of x exists and « is a scalar, then

Z [a7"z(n)] = X(az).

Proof: By definition,

Z [a™"z(n)] = Z a""z(n)z™"
or equivalently,
Z [a"z(n)] = E z(n)(az)™ "

Hence,
Z [a™"z(n)] = X(az).

L]

If the ztransform converges for all z of the form z = exp(jw) for real w,

then the z-transform can be represented as the sum of harmonically related
sinusoids, i.e.

X(w) = Z z(n) exp(—jwn),
which is sometimes called the discrete-time Fourier transform.

1.2.2.2 Discrete Fourier transform

Definition 1.2.2.2. The discrete Fourier transform of a periodic sequence
z(n) of length N is given by

X(k ¥ 12mkny 0 N=1
()-;;_:Ozz:(n)exp(— v ), =0,...,N -

and the corresponding inverse discrete Fourier transform is given by

ZX(k)e (]2”’"‘) =0,...,N-1
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Let Wx = exp (=2Z), the (principal) Mth root of unity. Then, the
discrete Fourier transform matrix, denoted Wy, is an N x N matrix,
defined by

k ~j2nwkn
[WN]k,-n =Wy" = exp (T) .

1.2.2.3 Modulation representation

Definition 1.2.2.3. Given a sequence z(n) and a positive integer M, then
the components of the modulation representation of the z-transform of x(n)
are defined X (zW§), k=0,1,...,M — 1,

If M = 2, then the components of the modulation representation are
X (z) and X(—z). The term modulation representation can be most easily
visualized in the time domain. Using the scaling theorem of ztransforms,
we obtain

ZTXEWR)] = (W) z(n)
= exp (J—M) z(n).

It is interesting to note that the components of the modulation represen-
tation can be combined pairwise to form a real signal, that is
X W)+ XCWEH) = W a(n) + W™ a(n)

2 cos(2ZEn)z(n).

1.2.2.4 Polyphase representation

Definition 1.2.2.4. Given a sequence z(n) and a positive integer M, then
the Type-I polyphase components of (n) are defined as zx(n) = z(Mn+k),
k=01,... M-1.

If M = 2, then zo(n) would be the even-numbered samples and z;(n)
would be the odd-numbered samples. Now, let us investigate the z-transform
of the Type-I polyphase components, that is

o M-1

Z Z z(Mn + k) 2~ (Mn+k)

n=-o0c k=0
or equivalently,

M-1

z7k i z(Mn + k)(zM)~",
k=0 n=-—oo



