PEARSON
Prentice

\; Hall
UIMLSlavaE Q¥ & F &

Practical Object-Oriented Development
with UMLU and Java

7 Ell i)

e Ve b
e TP R E B

—————

————

e 108 A ¥ %
med . | 0 B B B B A

L T T

L e e

e i

EAL KSR R

UML 5 Java HIE XM R HF %
2/ ENER)

Practical Object-Oriented
Development
with UML and Java™

Richard C.
William M. Tepfe

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Practical Object-Oriented Development with UML and Java™, 1*' Edition by
Richard C. Lee, Williarn M. Tepfenhart, Copyright © 2002

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the
Special Administrative Region of Hong Kong, Macao SAR and Taiwan).

A B EVRH Pearson Education Inc. B EHE K # A HHRREAT .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

SRR T P NSRS N (AP R TR AT BRI b [Q¥)R R 1T

LR RIRBUS E ARSI S BT 01-2003-8779 5

MG, BEYR.
AHEMH Pearson Education (54 ¥ & H AR H) AP MIRE, THRFETHHE.

AP EESE (CIP) K7

UML Y Java [fi [5] X§ 8 JF & =Practical Object-Oriented Development with UML and Java/ (¥£) 4, (3%£)
RPN, —REIA. —Ibat: WERF R, 20044
ISBN 7-302-08206-5

LU. ILO#%F. @%. I QHESRES, UML—EFRRit—EX Olava i& 5—BF®It—
LIV, TP3I12

of [RCAC B 1548 CIP B i 7 (2004) 2B 015572 %

H M E: WA # bk JERUERKEEMAKE
http://www.tup.com.cn B8 4. 100084
#E#H: 010-6277 0175 ERBRE: 010-6277 6969

TITmaE: Ak WD
#HEgit: L HF
: WAR IR
SN RS AN
BRI BN AL UR AT B
180230 ED . 31.25
200444 HE 1 /R 2004 €E 4 HE 1 IKETR
ISBN 7-302-08206-5/TP + 5923
1~3000
59.00 J©

=
o=
D D

3i
SE 00T Pk D

A S H & H R

LR G et i 0o i N

llls

Al

FHRANBERRRGTT R EAN LKA TR R A RRER . WRIRE
HI SRR, MXAER LA~ @HEEFT UML) Java KHE RN REAREK
B, MAFBEFR—FFRGENHFEE. SRR TRE R RS, it
BB X R MEZ RPZER . F B8 ERLE:
® RN HUITRIA Java EILHE RN SN AT, MR 55 F K BEAT IEFHY
RE.

® FBiELHANEEARE KKELRS.

® ChEAMETWARBYEE LBHREKETER, FHBA TR BRI REAR
K.

o BITHAXZEARKMBEL, Kk EEh —MEKM TR LRMAS LA
‘If»to

o RUFIMME N SEARM. WG SRF LA,

® NMAIMFARIA Java THETH R X R EH K.

o HAA T HNALERSEH IS FE L.

BERATHREANEHEEHSHNAE, S —ERETHRITHENRENRSRE.
HMEAER KMENET T, BAFE Java BR; MEAENEARR Java RIBHRE
g,

T [3 REA

BRBRMNBRABRENEETEAL . BINGE THZHAARETHEHAE,
REEFART EMRAEAR. R BRI EF AT LK 30 FHRAIVFRETT.
R, MAAERBARE, TR, RIOMETHRNEHRRRRIMEATNREEERK
R,

A AXFEBNE? ROAHE RN R0 T RATMERAHK T E, LR T NAEFE
T B TRGLH E N R EHE P RE R . WA, SRR EER
REBAN B SR T SR BATAR =N f 7

LHAVAEER T B KRS, LUEEBRTH Internet HRMNML &Pk, i
MBEEAREEINMERTHETEEAC, ERETAIGRLEIRE. TF. Kt
PLEHESH BETH BRI . MR R R BN IS 1T R R LR, oI LU B R S

v UML 4 Java I RXTRFFR (BEEIRD)

bt f s R BRS04, X R R FEEH R, Bk E R XL T A
WL RIX AL . B2 T F L E R A vk, R REIBOE CRSE h
1R T RN R I F7 ik
R AE L B X BB A B T SR M, et v, mRx g
SRR DU £ 5CR BA 25 M R H SNUBE R B0 AR Bt B k. X6 13k [T
o ABRBHIE RN SR, HRART A RIRG T St R TR A, M
I FAR T KA TR A
® MR REARIENERRBLAGENRE T NABRFHFREY.
® EHFEM AT TR, BT RO ERRERN, M
MEF RIS, ERAEA R, Eiit.
® LML FA] LR Y S R A 0 P R 1
T) % 3 () B O SR A R R XS TR SE H F BAR — A TR SR XANH M R T R4
ARG RM T RAEERNBAERE. HEH AN R OMSTHERITEA RIEEK
R RIE VR AT 4e 40

At ARG —BIRIES (UML)?

TEAM N REARKGEHE, BATDE, WREEEEY, BN EFENEEe
MEMFEBATURER . BRARNBEESHS, THRODBERE, S—plEs
(UML)C&RA T —F DlkdndE, BERTZERARNBERES, BRT -8 —ma
HETHSRE. ERARITESE UML 126 T 297518 .

UML Rt MR B T SR — FhE 5. B R AR T T nt vk
SERR L 25 10 A {8 A 2 BB & LB BT L T BT A 2 E AR . b, BREREE T %
BB S EENFELENRE. BE, TE—HTEENES, AURITT 2
At Rational Software Corporation i) Grady Booch. James Rumbaugh 1 Ivor Jacobson 41
FRR 2 B N SE X BIBLEIRES

UML HAREFHEE. &4 5B AR GRS 5 847 T A
B, AV EFRIF RGBT, FrAX UML (A FEAT S 38R MR 20 L 2k
B B TR A5 R BT

At 4748 Java?

AERHLBE, Java & — MMM R R OREES, B2 T4 7 &Y (multi-paradigm)
WIDET C++, HIMMERE T EOERH. HA Java H—MERRE BT R
PR SEhs L, Java RIEATEE Java ERIHLOava VM) L. X8 #/8 Java BB REBBIET

WE v

TEAEATSERE T Java ERINLEINLES Lo I (E T R A R AR 8 4 JURH R FI3R1E R AR
[F] 40 & & ok IR BB A E D RE

FRZE, X6 THRBMVMESIERTRIEARHE. —HH, | &0I1BEXRE
FLRM™HEITFR, I8 ERERE—NF R, MARLINIADNTE. X3,
A5 AR DI BEMERI LI (FRATRRZ A E KM ANED . XX BB T .
HRN G BT T RAMT MR EFFRBFE, BEARHM TS ER#IT
BXUR AT AR . REHREASHRERMEE S HEMREE S, hFRam
AR A . B FEREOREZ, sEvRE FH 5 /b) B 18R 5 A4 A 52
AR TR, T TAEATHEE TRAME, Rk THERNEE T8 KRS
MIRTES P SKBARNR TS AT M E R, TSRt RE T H . XL R 4
Rk AL DI B E T RS,

MR HTIL Sun RAEHIKRE Java FEHELE), BEAT1RSBIXEMR A, B B
ST S8 R S IR PP L T B BT A P SRR R (I SWING) LR (1 T 5 A 5 4 PR ke s
BRI R . B2 FIXEER C++RA, BIIEMAH, B4tT EL0IeE, A
WTUAEA GG NBIBZ MR, BAXSEEFRANGE P80/, FBEEmE
BATT AER, FUOXSERRTENA. B, ShrMBEsmIEs s FeiR.,
BZT C++iiAE, BRAERAARANNARFREIREDAPD. 7 C++8ilt, FRA
RATRER AN F BRI ER =M E R, EMHAR T B & BT 5. 928 L,
BAH AR RS RN ®EXRX T PC. Mac M Unix ¥4 K.

TEBACRILE 3 B 28 P H 5 Java ERIBL, 1#78M Internet & F# Java 5255, #E.
NS A FIBIT AT RE . XA BT 030 W S Rt SR ShietE, R T —%
BN RREF . ATLAS, WRKH Java, BAVBEATHELEET Internet 0 F 12 0LH0 T
REME T HARBIAARIRS . Java T WWW _FR AR SRR, 78— e
BRUFERMB AN FFEREZOTFEENRAR EERTH) 2 7R 4e)
$514 .

T () 3 SR 45 K B9 2 FR

BATARHE A SRARNAREE X, BAREISK. BRIV LB T
EEWA R EENBLEARRFRAR, XHENERRE: FROF R RARFENF
KRR BAVREATRENE . AT PR R GV LA AR HARM TR LT B4R %
REE,

AL T 3 B BAR B 77 i R A R B R TP R TR 2R, LU R
HRAFEAIRYE . AP HERRIEYE. SRAEEREATIXHER, SRR
HARH KB BAVRI, BAERRONERFHITEREET, FRAREE THZ.

A% UML 5 Java iR R IF R GEEHIRRD

XK. KRR R MFLER W REEK . ERIBE RN HBEREN, BIRKRTXER.
KHMBRPHTFERR, W, BINFERBREEHHMNCER). Hik, RIILH
FMAEFEENHEAEEER, UHIZEER)XER.

FEH RN RPIFEREKAIRRE “TIFH”, FATERTEHEERERY. AR
HWARE, CREFBRNEENBEEHENE, CHBTARBNGHELBir. BN
ERMEHE, AREINAREEBIFESZHIFIRNES I&F. £XTHEEIELW
B9E, RIINAT AL NERI A RIS T IR T R I 300 A0
SR

FMAHEIH SRR L E & EEER, 55%% UML /EABGES, %45 Java fE
AWBEEFTR B . UML 1 Java RFRAITEXEB FHE TS8R ERER
Bl

BATTR T SRS RS EMT I GhENRD)N LS. FEERRENER
R SRBE B FEEH . RSPl Iatn Tt R REsE. RITENATHET
HRKEERNORE (XR—NMREENEEH, FAERKEEREFEEA TS H—
). Xy HAE K S 50 A3 S 8P EE B R AR

BAVEGE, OB RENEANRRANXRE, FEFRARNES R THEKL
EZRHFANRHBEPFINBHNESHAE. HBAN AT EMS A R mn g
BIEARET KB, EHFRBEHEABZHE . S HFFRA RIS 272 10 H B\ LR
ZHl, BEOTFETBOALE [FRE X, ABRLERIER, GIREE
REFRFEHE KB B4 8020 M, A 80%EM IR A Z P~ HF & A
R, TS KRBYH 20%8 5 5 .

EHHEENMBERNBERNBFEENGR, SENRRIER. SRR E
UEAHANRITE. REXERE+IER, BFEFFEEBHRE: IFEARE
Bt—FhsCRIAESE, XMELR A A RAE XN S EBEN T RA BRI R A .

BJa, BAFARBRSHEXFTANN, BRANREOEAR —MBEBHEAR. R
WHEEEETHRHA. BRNEEREEERNE SN, SSEDHRIET SRR
TR, HREARUMBERFIARENEMEEE T, RINVBEIER AN SELRR
Java PHEZARBIHBHHEHERB T M EFBAGER P, XEEHRE
B, {BE Java PR HERME AN ZHERTFEENREES,

EHABMRHE

AN S DA77 2 T X RO AR R KRR (M. 341
) EARRALAR T WRAE Java o FF R SR 1 0GR FRE 7 168 B0 207 0 8 1 % 2 MO ABE A R 1 35
VRN,

3 v

o

BT ABmE N — AR H¥IEH, NMAENMUFREE. RITEH T Richard £
CLSRAE I [l 0 R AR S R A B IS BEE P T E R 877 (BRBNIHARERZER
WEERNZHRENTE. BERITR TNHE RN EER—ANEELE. KEH
HWUR LN BTG RGER . RINFEEE RUXE S RENIE S, NUHES
RiARE B R EEN AN R,

W1 E, MANBREEEEINOMS, HE I RN SRS — o 5 R
ZHLHIIAR R A o

F2E, MAEAXNRIOERRNL.

BI3E, EIAGIGTERFR - MRERE, EAFRSBREFE.

BA4E, BLRINRABED, BRI RITRE.

85 &, NMEMAEL IR E GRS SRS KX B« B R
o -

B 6E, HAMENRITHITRE.

BTE, MBWTRBAEREIEFITH.

FE, MAJIMARMNXRGEAMTE. BEANEES), SNTHTALERS
FEA IR .

B9 %, MAWMFTH B L (declarative fact)3 | A\ B3T3 5 43R 0 T [3 Sk
Rch FI A F S A TR BB

F10FE, BESHER, EFHHEO PR LI helper K.

FNE, NMEIMFRRTERMGTE., !

F12E, M4 Java EESRE.

B 13 E, AWM Java TEEMED.

B4 E, MABSTHNLHLE.

15 %, NAHFTHOTHLE.

%16 &, 8 /A% E (generalization/specialization)] S HL T 78 .

F1TE, MARMEXRNLRIRE.

Mk A, BMENEEHRES.

M B, EENH Java.

3% C, b3k Java Ml C++B9 R,

' NREMBIEE, SR ERERN, FHR— ARSI TERN S HANEE, B, Hla~nE
ngifﬂﬁi‘ﬁﬁﬁﬂﬁﬁlgﬁéﬁi'ILﬁ’iﬁi’rfuﬁo EFAXTLRMBNPENAT LB HER
BHRA.

vII UML 5 Java MRS ST R (BEIRRD

EHRIERAZ

A BFEHMLRERTHBRET RN RMREREELEE. UHFHARINEF
DT B TR P B FARNER . ABABRTENERANEETNE. £
Frenr 11 &, FEANTAKR RS . IHRENHR -RELES—NRE, §it
IR AT ENLERIE . AR TR —BREEY. B—RARERS RN,
NIRRT R BT B RARRERE RN, FENS LI T M08,

BAVEFRET 0B O HEETHFRIANRE. 5%, RNEAFKEELEALH
BHACETFMESNERER X T EMEASK, BEALTER, UETREEES YN
WSER. 8.2, IXFERKA B B MIX S & AR AR T T 8, T3 A 37
HARME. B=, LRHTEAMREBE —RRS TR/ NI, Sae
LA RRIRN B M5EMRA —MEEAR. BN, TERAENIPFRY, ERFF R
PR S IR, RRMBHRENER. BH, MFERRFARR, By RS
LhR AR — DR, M ESAT MU . MR T, B, EE—A K
GENIHE, TULSENERAARXRES.

AR P SRR R — AN KBV B AR, PR eP B (A B BBt Rp 3
. SRERAAEY, BAEHER. XEHREREMBIIAT — G MLHAES
MXFR. XEHRPHEHARGHE ., R, BE. MENAG. BEE NSRS
B, WERMHAEFEFRE AR BHEERT, HEAFRMIEREE 5TEH
M= AR R B T AR

T H AR S B R R = BIUANEAE . KKIIRE A4 FE AL B) Tk p— 5
EW, M MYREEX ARG TEAE LRRTFRIRE T, XPH8S 80MH®
TR ESE, HEESHENAAXNRE, FUSIMIEmAREER. 2454
AREBATINE TAF, XPEA ReIRAt SE I E , AR R R L

MR B NEREE L . B RARHEN 15 AREER, 515 A%k, g%
R AT dh SHE KR T8 A T PR R FF R AR B A HEAE R A S LI B 4158
BIELRET A CEIERXRETL AN, FAXHB T ¥4 0B RIEER, i
B T RIERXBKRE HA N R RN ZRE.

Preface

Practical Object-Oriented Development with UML and Java is for busy professional
software analysts and developers who work on large systems. If you do not have time
to take a class and need to get up-to-speed on object-oriented technology using uni-
fied modeling language (UML) and Java, then this book is a self-teaching guide for
you. It will help you understand the differences between object-oriented analysis,
object-oriented design, and object-oriented programming. Our goals are to

¢ Teach you to build an object-oriented application using Java and make the
right trade-off decisions to meet your business needs

* Clarify the basic concepts associated with object-oriented technology

 Supply sufficient depth in coverage for students and practitioners entering
the field to get them up-to-speed

¢ Expose some of the myths surrounding object-oriented technology while
focusing on its practicality as a software engineering tool

* Provide a practical approach to analysis, design, and programming in
object-oriented technology

¢ Show how to implement object-oriented technology using Java

* Balance theory with application practices in the existing literature

You do not have to know computer science or advanced mathematics to
understand the important object-oriented concepts and issues in depth. Even the
programming chapters do not require a background in Java; they illustrate how
working code in Java is produced.

OBJECT-ORIENTED TECHNOLOGY

We are software developers of large systems. We have delivered code written in sev-
eral dozen programming languages representing a half-dozen software technologies.
There have been few software revolutions that we have not experienced over the last
30 years. So it is from some nontrivial perspective that we say that it is our belief that
object-oriented technology is the most important software technology with which we
have worked.

XXi

xXii

Preface

Why do we say this? Well, object-orientation has changed the way we build
software and the way applications intercommunicate over worldwide networks and
across multi-vendor computers. Moreover, the object model is changing the way we
design business processes and the way we think about an enterprise.

Most enterprises are in the process of redesigning themselves to meet current
business challenges introduced by the Internet. Object-orientation is playing a major
role in this effort by providing a model that captures the business processes, proce-
dures, policies, and rules that facilitate design. The use of tools that translate the
model into an operational system speeds implementation of the redesign. As market
or business conditions change, these systems should be regenerated to reflect these
changes by updating the model and using these tools. Solid software engineering
practices have taken us farther and faster than any other approach in previous
decades.

It is a common belief that object-oriented technology has put a dent in the
software crisis, meaning that the mechanisms of object-oriented technology are
becoming for software what the bolts and beams are for construction design and
what the chip is for computer hardware design. This belief stems from the following:

* The proficiency of a higher-level object-oriented model provides the soft-
ware designer with real-world, programmable components, thereby reduc-
ing software development costs.

e Its capability to share and reuse code with object-oriented techniques
reduce time to develop an application.

* Its capability to localize and minimize the effects of modifications through
programming abstraction mechanisms allows for faster enhancement devel-
opment and provides more reliable and more robust software.

* Its capability to manage complexity allows developers to address more diffi-
cult applications.

The collection of object-oriented concepts is a tool set for modeling reality.
This object-oriented tool set gives developers the best means of managing the com-
plexity. Certain object-oriented concepts help developers produce flexible and
maintainable software.

WHY UNIFIED MODELING LANGUAGE?

As practitioners of object-oriented technology, we know that all the methods, if
practiced properly, result in the same or a similar model. Different modeling lan-
guage notations, however, can be impediments to progress. The unified modeling
language (UML) has become an industrial standard that has integrated different
modeling notations into a single modeling language notation. This is reason enough
to have chosen the UML.

Preface

XXiii

UML is a language for documenting our analysis and design models. It gives us
all the drawing icons necessary to capture most of the concepts or mechanisms that
we find valuable in solving real business problems. Also, it provides all the necessary
diagrams that are vital for documenting our models. Finally, it is a living language
that gives us the ability to extend the notation for mechanisms not yet defined by the
distinguished group of Grady Booch, James Rumbaugh, and Ivor Jacobson at Ratio-
nal Software Corporation.

UML is not the central subject of this book. It is presented as a means of doc-
umenting the analysis and design models that are developed as a result of the meth-
ods that are the central subject of this book. All of the figures of UML are presented
and discussed in terms of what information is captured within them and how that
information is captured.

WHY JAVA?

It is true that Java is exclusively an object-oriented programming language and that
this exclusivity tends to limit its use compared to the multi-paradigm programming
language C++. Yet Java has one benefit that far outweighs any general limitations.
In particular, Java runs on the Java Virtual Machine (Java VM). This allows a Java
program to run on any machine that has an implementation of the Java VM running
on it. This frees developers from having to design and implement the same function-
ality for several different combinations of hardware and operating systems.

There are positive consequences to the use of the virtual machine that may not
be apparent at first glance. For one, vendors can now focus on development of tools
and products knowing that they have to invest development dollars on only one
implementation and not five or six. This means that they can emphasize the realiza-
tion of greater functionality (read that as greater business value). This impacts reuse
efforts as well. One can develop libraries on any hardware running any operating
system and reuse the code without modification for platform differences. Program-
ming errors will not appear in one version of the code for a given platform and not
in another. The broader base of reuse of the same code means that greater reliability
of components can be achieved in less time and cost. Analysis can focus on business
value; design can focus on greater flexibility and maintainability; and implementa-
tion and testing can now focus on quality, reliability, and performance. The net
result of this change in focus is better code for less money.

These benefits are seen when one looks at the large number of Java libraries
(frameworks) that are now available from Sun. There is now a good set of general
utility libraries, a high-performance graphical user interface library (e.g., SWING),
and libraries of special-purpose business classes available to developers. Compared
to the C++ versions of these libraries, they are far more sophisticated, provide much
greater functionality, and are more easily incorporated into a final product.
Because these libraries are available across all projects and are well documented in
other books, they are widely used. Hence, expertise in their use is readily available.

xXiv

Preface

This is to be compared to the C++ versions that have entirely different application
programming interfaces (APIs). In the C++ world, a developer may be an expert
for one product on one platform and know nothing about other products for other
platforms. Few programmers have actually written code for the PC, Mac, and Unix
platforms.

The direct incorporation of the Java VM in modern web browsers makes it
possible for Java programs to be downloaded from the Internet and run from within
the browser. This has helped provide greater functionality within the browser envi-
ronment and has spawned a new class of applications. It is safe to say that it would
have been impossible for us to have achieved the recent gains in functionality being
delivered to users via the Internet without Java. Java programs now appear as both
client and server applications. The widespread use of Java in the modern World
Wide Web is unlikely to diminish until a new (as yet unrecognized) technology pro-
vides a greater set of abstractions and the same broad platform support.

OUR APPROACH TO OBJECT-ORIENTED TECHNOLOGY

We are not object-oriented purists, and neither are we theorists. We are developers
willing to use any good idea that will help us achieve two very critical business goals:
lower development cost and reduced time-to-market for enhancements. We believe
that these technical objectives—reliability, maintainability, and flexibility—are crit-
ical to meeting these business goals.

Our approach to using object-oriented technology is to mange the complexity
of developing software so it is reliable, maintainable, and flexible. Managing com-
plexity is the key to achieving these objectives and, thus, our business goals. To man-
age complexity in complex problem domains, we find that the developers are
required to know how objects, classes, relationships, and rules fit into the object par-
adigm. When we model most complex problem domains, we find objects, classes,
and many relationships among objects. In addition, we need to capture the rules
(policies) within that domain. Thus, we have to use very rich static modeling tech-
niques to capture the data (object) relationships.

Many object-oriented experts consider relationships as “bad™ because they
violate the encapsulation principle. From our perspective, it helps us manage the
complexity of the problem domain and helps us to achieve our business goals.
We gladly use it, and we look for more mechanisms and language support in this
area. In Chapter 9 on declarative semantics we write that rules and policies
should be captured as an integral part of our model and not in special subsystem
extensions.

Using mechanisms to help us model complex problem domains is consistent
with our choice of UML as our modeling language and Java as our programming lan-
guage. Both UML and Java allow us to define any needed mechanism that helps us
to build more manageable software.

Preface

XXV

We discuss behaviors (dynamic and static) and polymorphism for capturing the
procedural aspects of the model. The use of finite state machine or some other state
model helps us manage procedural complexity while addressing timing, synchroni-
zation, and interrupts. We also present exceptions for managing error recovery (an
important topic because error recovery can comprise half of a programs logic).
These areas are generally ignored or overlooked by most object-oriented books.

We believe the key to success in building large object-oriented systems
requires that developers and programmers know more than what is taught in most
object-oriented books. Building large systems requires using mechanisms promoted
by some object-oriented experts but not accepted by all. Professional developers
need to at least understand how these aspects of the problem domain can be handled
before they can be productive team members. This book will not make you an
expert. You still need experts or consultants to develop the system. By applying the
80720 rule, this book provides the 80 percent that can make you productive and
understand how the experts solve the difficult 20 percent.

In this book we do not cover the latest trends or fads in object-oriented
technology, including object design patterns, the standard template library, and dis-
tributed object computing. Although they are interesting, we are not convinced that
they contribute significantly to our goal of providing a practical framework for
enabling developers new to object-oriented programming to get up-to-speed as soon
as possible.

Finally, we do not agree with most experts that object-oriented technology is a
mature technology. We believe it is maturing. Object-oriented technology has the
enormous potential to help us manage complexity that did not exist with the earlier
technologies (procedural, functional, rule-based, etc.). We see in object-oriented
technology and Java many different abstraction mechanisms merging (integrating)
into a truly powerful technology. This merging is not yet complete, but it is far more
complete in Java than in any other endeavor in object-oriented technology.

ORGANIZATION OF THE BOOK

We take the reader through our rational in applying object-oriented techniques and
methods. These are not a set of absolute laws. Our goal is to make you think about
good object-oriented concepts and good design principles when developing software
and programming in Java.

We have written and designed this book to be a self-teaching guide that should
be read in sequential order. We have adopted a method that Richard has used for
years teaching object-oriented concepts and basic skills; however, we do not advo-
cate this as a method for building object-oriented systems. Each chapter discusses a
major step of our approach to object-oriented technology. Most chapters conclude
with a step-by-step guide or recipe. We hope the reader will use these steps only as
a guide; always rely on common sense rather than following prescribed steps blindly.

XXVi

Preface

Chapter 1 introduces abstraction as a mechanism for controlling complexity
and establishes object-orientation as the modern inheritor of the long line of
abstraction mechanisms.

Chapter 2 presents the basic principles of object-orientation.

Chapter 3 begins the process of development by using the use-case approach
to develop a specification model.

Chapter 4 begins the process of developing an analysis model by identifying
objects/classes/interfaces.

Chapter § describes how to differentiate between “real” objects and “false”
objects by identifying attributes (data) and services associated with the object.
Chapter 6 demonstrates how to capture objects’ behavior.

Chapter 7 describes how to identify and describe dynamic behavior.

Chapter 8 describes the various relationships (generalization/specialization,
link, object aggregation, etc.) that are available for organizing all the objects in
the system.

Chapter 9 describes how to incorporate declarative facts into the object-
oriented model about object knowledge and a rule-based mechanism for their
implementation.

Chapter 10 reviews the analysis model and restructures it to take into account
helper classes.

Chapter 11 addresses some elements of developing the design model.!
Chapter 12 presents programming in the Java language.

Chapter 13 introduces how classes and interfaces are implemented using Java.
Chapter 14 describes how static behavior can be implemented.

Chapter 15 describes how dynamic behavior can be implemented.

Chapter 16 describes how generalization/specialization can be implemented.
Chapter 17 describes how additional relations can be implemented.
Appendix A presents a summary guide of the unified modeling language.
Appendix B presents a summary of Java.

Appendix C presents a comparison of Java and C++.

USING THIS BOOK

This book is primarily targeted at experienced software developers and upper-level
college students. It is based on the material taught in industrial courses attended by

' Design is very complex and, from a system perspective, is a separate topic from object-oriented technol-
ogy. However, Chapters 14 through 22 present design material from the perspective of how the analysis
concepts can be implemented. Idioms and design patterns are presented in all of the implementation
chapters.

Preface

XX Vii

competent programmers. The material of this book is presented in two courses of
one-week duration. The first week covers the first 11 chapters while the second week
covers the remainder of the book. This course has always been taught utilizing a
project in which the students develop a computer game rather than a homework-
based approach. At the end of the first course, students have a design for a game. At
the end of the second course, students have a fully functional implementation of
their design.

We have chosen the project-based approach for several reasons. First, we have
found that homework problems either are too trivial to effectively communicate the
significance of the concepts or are too complex to be performed in a reasonable
period of time. Second, the value of this paradigm is best learned from the consistent
application of the concepts that can only be achieved via a project. Third, a substan-
tial project gives a sense of real accomplishment as the projects are not simple little
programs that can be finished in a single day of programming. Fourth, the project is
developed in a team context with the periods of discussion, decision making, and
reversals of decisions that actually occur when developing a program. Fifth, for most
university students this will be the first program of substantial size that they will have
to specify, analyze, and design. Finally, the selection of a project of suitable scale
enables the student to master all of the key concepts.

The typical project that is employed in a university environment is a large
adventure game in which characters explore some virtual world picking up trea-
sures, fighting monsters or villains, and achieving some final objective. These
games typically incorporate a hundred classes and just as many relationships.
These games include many different kinds of terrain, weapons, monsters, treasures,
and characters. With the widespread use of networked games, many project teams
have chosen to develop multiplayer games. In most cases, the games developed by
project teams have the same levels of complexity as many commercially developed
products.

A reasonable project team consists of three or four students. A larger team
spends too much time coming to agreement and a smaller team tends to become
overwhelmed. The team works on the project during class time so that the instructor
can review progress and answer questions concerning the application of the con-
cepts, so class size is kept to a manageable size. The students have to work on the
project weekly so as to complete the project on time, and activities are scheduled to
correspond with lectures.

Following is a suggested schedule of course activities. It assumes a standard 15-
week schedule with the final exam given in week 15. A key feature of this schedule
is that it allows generous time early in the semester to define the game and develop
the use cases. Lectures occasionally precede the activities performed by the team by
as much as three weeks. This has been found to be advantageous because it prevents
students from making common mistakes, such as confusing attributes and associa-
tions or object state with object attributes.

Acknowledgments

We owe so much to many people. The impetus of this book came from requests from
people who wanted a book that presented more of an engineering approach to the
development of Java programs. We appreciates their persistence and their encour-
agement, ignoring the perils to our personal lives.

Because we are basically developers (not researchers, academics, or writers),
we have leveraged off the work of object-oriented researchers (who originated all
the ideas) and object-oriented writers (who presented these ideas to us in earlier
writings). We simply apply these ideas to building real applications in a useful way.
To all the originators of the ideas, concepts, mechanisms, and techniques and to the
greater object-oriented writers before us, we acknowledge them; without them, this
book would not have been possible.

Theories and ideas are wonderful; however, to practitioners, experience is the
best teacher. We could not produced this book without our experiences in applying
object-oriented technology and the methods to real projects. We thank our many
bosses, present and past, who had the courage to let us do leading-edge (and many
times bleeding-edge) software development. Without their support, we would not
have been able to test what we have written. We also thank reviewers William
McQuain of Virginia Tech University and Michael Huhns of the University of South
Carolina.

Richard Lee thanks the multitude of people who have worked for him and who
were the pioneers in applying the ideas written in this book on real projects. They
shared with him both the excitement and the misery of being “first” to apply Java
technology to large projects in their respective companies. To all of you, Richard
owes his thanks.

William Tepfenhart thanks his colleagues at Monmouth University for their
support while putting together this book. Most importantly, he appreciates the
patience of his family and their willingness to accept that there were times when
deadlines took priority.

RICHARD C. LEE
WILLIAM M. TEPFENHART

XXiX

