Compiler
Design

Theory

Compiler
Design
Theory

PHILIP M. LEWIS II
DANIEL J. ROSENKRANTZ
RICHARD E. STEARNS

General Electric Company

o

vy ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts - Menlo Park, California _
London - Amsterdam - Don Mills, Ontario - Sydney

Copyright © 1976 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1976
by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada. Library of Congress Catalog
Card No. 75-9012. .

tSBN 0-201-14455.-7
ABCDEFGHIS-HA-798765

RiFEFRITRIL

BHHIBM AR R, AR T 14 LEWARRET 12 A—%
B, REREBFRITAS XENEY “BEEFRITE
RRBA B2 —, ERHTAEE AR S £, NEaEL
RFRFRILTE S MRS 3 A% 1D DL R
IKFRE BRELRER, EEL ‘BN’ IERBTRREY
BERSOEM,HEENAT HHBERF LI EAEE, £
BN RERET ERFHME QMR ey AR Aay 5%
BFH LSBT A SR ERE AN H. U EAK
REWNLBRIE, FRIFNSSNE, THIBEN TRERIHE
B LARBR T ARSI H B TR B TR £ 538 15 .
@310, @FMRETHI, OFRRFTRMAHXA, @ MINI-
BASIC {5 4B, ® Fifit BN, © 5 L FXEXMEYE, OW%RHS
52, @ HTAA T B4, © RAE X MM HTARA T #9403 , ® MINI-
BASICATLAE, @R LLE, @BH-ABILE, @8K-3%
S, @ MINI-BASICH R BF I RIB > 4 BIF, O B iR L g
o MR A: MINI-BASIC HEFfl; R B: RARX;MRC: &

HaME.

- THE SYSTEMS PROGRAMMING SERIES

*The Program Development Process
! I Part I-The Individual Programmer Joel D. Aron

The Program Development Process

Part 1I-The Programming Team Joel D. Aron
*The Design and Structure of
Programming Languages John E. Nicholis
Mathematical Background of -
" Programming Frank Beckman
Structured Programming. Harlan D. Mills

Richard C. Linger

*An Introduction to Database Systems C. J. Date

Compiler Engineering Patricia Goldberg

Interactive Computer Graphics Andries Van Dam
*Sorting and Sort Systems Harold Lorin
*Compiler Design Theory Philip M. Lewis Il

Daniel J. Rosenkrantz
Richard E. Stearns

E“ Recursive Programming Techniques® Wilkiam Burge
. Conceptual Structures: Information ‘
WM | processing in Mind and Machines ~ John F. Sowa
*Published

IBM EDITORIAL BOARD

Joel D. Aron, Chairman James P. Morrissey

Edgar F. Codd Ascher Opler*

Robert H. Glaser* George Radin

Charles L. Gold David Sayre

James Griesmer* Norman A. Stanton (Addison-Wesley)
Paul S. Herwitz Heinz Zemanek

*Past Chairman

Foreword

The field of systems programming primarily grew out of the efforts of many
programmers and managers whose creative energy went into producing
practical, utilitarian systems programs needed by the rapidly growing
computer industry. Programming was practiced as an art where each
programmer invented his own solutions to problems with little guidance
beyond that provided by his immediate associates. In 1968, the late Ascher
Opler, then at IBM, recognized that it was necessary to bring programming
knowledge together in a form that would be accessible to all systems
programmers. Surveying the state of the art, he decided that enough useful
material existed to justify a significant codification effort. On his recom-
mendation, IBM decided to sponsor The Systems Programming Series as a
long term project to collect, organize, and publish those principles and
techniques that would have lasting value throughout the industry.

The Series consists of an open-ended collection of text-reference books.
The contents of each book represent the individual author’s view of the
subject area and do not necessarily reflect the views of the IBM Corporation.
Each is organized for course use but is detailed enough for reference.
Further, the Series is organized in three levels: broad introductory material
in the foundation volumes, more specialized material in the software vol-
" umes, and ver¥ specialized,theory in the computer science volumes. As such,
the Series meets the needs of the novice, the experienced programmer, and
the computer scientist.

- Taken together, the Series is a record of the state of the art in systems
programming that can form the technological base for the systems program-
ming discipline.

The Editorial Board

Preface

This book is intended to be a text for a one- or two-semester course in com-
piler design at the senior or first-year-graduate level. It covers the basic
mathematical theory underlying the design of compilers and other language
processors and shows how to use that theory in practical design situations.

The applicable mathematical concepts come from automata and formal
language theory. We have developed these concepts in a rigorous but non-
formal style to make them understandable to a wide range of readers;
including those who are not mathematically oriented. We believe that auto-
mata and formal language concepts constitute an excellent basis both for
teaching compiler design and for. designing real compilers. We ourselves
have designed two commercial compilers based on this theory.

In our selection and presentation of material we emphasize “transla-
tion,” in contrast to just “parsing.” The formal concept of a syntax-directed
attributed translation is used to specify the input-output performance of
various language processors.

Another concept we emphasize is that of an “automaton.” We use such
automata as finite-state machines and pushdown machines as basic build-
ing blocks for compilers. We emphasize synthesis procedures for designing
an automaton to perform a specified translation.

The material in this book constitutes an essentially complete des1gn
theory for the lexical and syntax portions of a compiler. The use of attributed
translations allows us to include in the syntax-box design a good deal of what
is often characterized as “code generation” or “semantics.” The book also
includes additional material on code generation and a brief survey of code
optimization.

e

xii Preface .

The subfect of run-time 1mplementatlon is not dlSCUSSCd Although this
topic is of considerable 1mportance in deciding what code a compiler should
generate, we believe it is not a part of “compiler design theory” but rather
a separate subject that should be treated in a course dealing specifically -
with programming language structures. .

Because the automata theory in this text has been selected for its
relevance to compiler design, certain basic automata-theory concepts have
been bypassed; consequently, this book cannot be used as the exclusive text
in an automata theory course. However, students who have taken a course
using this book should find a subsequent course in automata-theory greatly
simplified. Conversely, some training in basic automata theory permits
students to cover the material in this book more rapidly; thus the text can be
used either prior to or after taking an introductory course in automata
theory.

Compiler Design Theory is completely self-contained and assumes only

e familiarity with programmmg languages and the mathematical sophisti-
szon commonly found in juniors or séniors.

After an ifitroductory chapter, Chapters 2, 3, and 4 cover finite-state
machines and other topics relevant to lexical processing. Chapters 5 and 6
introduce pushdown machines and context-free grammars.

If students have had an introductory course in automata theory, much
of the material in Chapters 2 through 6 can be omitted and the remainder
covered very rapidly emphasizing the applications to compilers. In any case,
Sections 2.7 through 2.11 can be omitted.

Chapter 7 introduces the ideas of translations and attributed transla-
tions; this material should be mastered before progressing.

Chapters 8, 9, and 10 cover top-down processing while Chapters 11, 12,
and 13 deal with bottom-up processing. These portions of the book are in-
dependent and the instructor can elect to cover either or both of them. In
any case, Sections 8.7, 10.5, 12.6, and 13.6 can be omitted.

To demonstrate the theoretical concepts in a “real” design situation, the
book includes the design of a compiler for a subset of BASIC. The language
was selected to be sufficiently complex to illustrate the concepts presented
in the book and to have a trivial run-time implementation (since; as we have
said, we believe the implementation of language features to be a separate
subject). However the language has a variety of S$yntactic and semantic
features including a syntactically recursive control structure (a FOR loop). In
Chapter 4, we design a lexical box for the compiler and in Chapters 10
and 12 we design syntax boxes that operate top-down and bottom-up,
respectively. In Chapter 14 we design a code generator. Either this design
or some extension of it can be implemented in a laboratory portion of
the course.

Preface xifi

Chapter 15 contains a brief survey of code optimization.

The book also contains three appendices: Appendix A is a language
manual for MINI-BASIC; Appendix B discusses those aspects of mathe-
matical relations needed for various test and design procedures; Appendix C
presents several methods for transforming a given programming-la uage
grammar into one of the special forms presented in the text. :

The material in this book has been taught for several years in one-
semester first-year graduate courses at Rensselaer Polytechnic Institute in
Troy, N.Y. and at the State University of New York at Albany. It ‘has also
been taught as a one-semester undergraduate elective at Union College in
Schenectady, N.Y. We would like to thank the students at these institutions
whose occasional bewildered looks have motivated us to do several rewrites
of the material.

We would like to express our appreciation to the following people who
read early versions of the manuscript and made helpful comments: John
Hutchison, Michael Hammer, Stephen Morse, John Johnston, Donna Phil-
lips, Daniel Berry, Alyce Orne, Gary Fisher, Walter Stone, James Roberts,
and Robert Blean.

We are also grateful to the management of the General Electric Research
and Development Center and especially to Richard L. Shuey and James L.
Lawson who established the free and stimulating environment in which ovr
work was done and provided the time and opportunity to write this book.

Schenectady, N.Y. P.M.L.
December 1975 DJR.
' R.ES.

1.1
1.2
1.3
14
1.5
1.6

2.1
22
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

2.14
2.15

Contents

CHAPTER 1

INTRODUCTION

Language Processors. ...ttt 1
A Naive CompilerModelco.. o 2
Passes and BOXeSttt 6
The Run-Time Implementation .e............... ... oo, 7
Mathematical Translation Models 7
The MINI-BASIC Compiler....... ... 8
CHAPTER 2

FINITE STATE MACHINES

INtroduCtion e 11
Finite-State Recognizerso i o 12
The Transition Table 14
Exitsand Endmarkers............... ... i U 16
Design Example 19
The Null Sequence i 22
State Equivalence 24
Testing Two States for Equivalenceoienit 27
Extraneous States 31
Reduced Machines e 33
Obtaining the Minimal Machine. e 34.
Nondeterministic Machines oo oo B 38
Equivalence of Nondeterministic and

Deterministic Finite-State Recognizers P 42
Example: MINI-BASIC Constants, 45
Referencesooioiiiiiiii e e 51

xvi

3.1
32
33
34
35
3.6
3.7
3.8
3.9
310
311

4.1
42
43
44

5.1
5.2
53
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Contents

CHAPTER 3

IMPLEMENTING FINITE STATE MACHINES
Introduction.......... N 61
Representing thelnputSet....................................... 62
Representing the State 64
Selecting the Transitionscooiiini.... 64
Word Identification—Machine Approach 67
Word Identification—Index Approach............................. 72
Word Identification—Linear-List Approach 74
Word Identification—Ordered-List Approach....................... 74
Word Identification—Hash-Coding Approach e 77
Prefix Detection.............. i i, 81
References, EEERERRREE 84
CHAPTER 4

MINI-BASIC LEXICAL BOX
TheTokenSet...........c.o i i i, 87
The Identification Problems.................................... .. 90
The Transliteratorco. oo 94
TheLexical Box.............o i i 97
CHAPTER 5

PUSHDOWN MACHINES

'ﬂ)eﬁnition ofa Pushdown Machine.............................. .. 109
Some Notation for Sets of Sequences.............................. 116
An Example of Pushdown Recognition 119
Extended Stack Operations.................................. ... 121
Translations with Pushdown Machines 125
Cycling S L 128
References 129
CHAPTER 6

CONTEXT-FREE GRAMMARS

Introduction....... 135
Formal Languages and Formal Grammars...................... ... 135
Formal Grammars—An Example 136
Context-Free Grammars P 139
Derivations 141
Trees . ..o oo 143
A Grammar for MINI-BASIC Constants..................... 148
A Gramimar for S-Expressionsin LISP. 150

6.10
6.11
6.12
6.13
6.14
6.15
6.16

7.1
7.2
7.3
74
1.5
7.6
1.1

7.9

1.10
7.11
7.12

8.1
82
8.3
84
8.5
8.6
8.7
8.8
8.9
8.10

9.1
9.2
9.3
94
9.5
9.6

Contents xvii

Different Grammars for the Same Language 151
Regular Sets as Context-Free Languages.................:c.... ... 153,
Right-Linear Grammars coiiiiiiiniiiiiinnnne... 155
Another Grammar for MINI-BASIC Constants 161
Extraneous Nonterminalsol 163
A MINI-BASIC Grammar for the MINI-BASIC Language Manual. .. 168
References R T I /3
CHAPTER 7
SYNTAX-DIRECTED PROCESSING
Introductiono oo a s
Polish Notation
Translation Grammars......................} .
Syntax-Directed Translations R
Example—Synthesized Attributes o i
Example—Inherited Attributes o

. Attributed Translation Grammars
A Translation of Arithmetic Expressions................ g 2
Translation of Some MINI-BASIC Statements ., e wans. 208
Another Attributed Translation Grammar for Expressions............ 207
Ambiguous Grammars and Multiple Translations wewiine. 213
References i e 216
CHAPTER 8 . :
TOP-DOWN PROCESSING '
Introduction. 227
AnExample...0 228
S-Grammars 235
Top-Down Processing of Translation Grammars.................... 239

Cg-Grammars ... o 245
LL() Grammars.cooeiee e 252
Finding Selection Sets .. 262
Error Processing in Top-Down Parsing. 276
Method of Recursive Descent.................................... 284
References e 288
CHAPTER 9
TOP-DOWN PROCESSING OF ATTRIBUTED GRAMMARS
Introduction. 303
L-Attributed Grammars 303
Simple Assignment Form.......................... 305
An Example of an Augmented Machine 311
The Augmented Pushdown Machine e 320

Example of a Conditional Statement 327

xviii

9.7
9.8
9.9

10.1 -~

10.2

10.3 - A

10.4

105

1

112
1.3
11.4
11.5

156

1.7

121
122
123
124
12.5
12.6
12.7
12.8
12.9

13.1
13.2
133
13.4
13.5
13.6
13.7
13.8

Contents

Example of Arithmetic Expressions B 332
Recursive Descent for Attributed Grammars....................... 337
References i 343
CHAPTER 10
MINI-BASIC SYNTAX BOX
An LL(1) Grammar for MINI-BASIC 355
The Atom Set and Translation Grammar........................... 357
An L-Attributed Grammar 364
TheSyntaxBox, 367
A Compact MINI BASIC Expression Processor..................... 383
CHAPTER 11
' BOTTOM UP PROCESSING
lntroduction 401
Handles . .: . .f. B 402
AnExample.......................... .. P 405
. ASecond Example 411
Grammatical Principles of Bottom- -Up Processing 420
Polish Translations 423
S’AtmbutedGrammars.“.A........; 424
, CHAPTER 12
SHIFT—IDENTIFY PROCESSING
lntroductlon ... 435
The SHIFT-IDENTIFY Control 436
Suffix-Freg SIGrammars..................... ...« ... 443
Weak-Precedence Grammars 447
Simple Mixed-Strategy-Precedence Grammars 452
Computing BELOW and REDUCED-BY 457
Error Processing in SHIFT-IDENTIFY Parsing....... 462
MINI-BASIC Syntax Box 469
References 485
CHAPTER 13
SHIFT-REDUCE PROCESSING
\
Introduction........... ... 493
AnExample......... e 493
Another Example 504
LRO) Grammars 513
SLRA1) Grammars L2 515
Epsilon Productions e, 520
Error Processing in SHIFT-REDUCE Parsing »... 526

Ref&rences...........,......................, 531

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Al
A2
A3
A4
AS

B.1
B.2
B3
B.4
B.5

Contents xix

CHAPTER 14

A CODE GENERATOR FOR THE MINI-BASIC COMPILER
INEEOAUCHION « - . o ettt et et et e e et 537
The Compiler Environment and the Target Machme 537
The Simulation of RunTime i 538
Memfory Layout 539
Table Entries il 540
The GEN ROULNE . . . oo oottt i eeeaen i, 542
The Register Manager, 544
Routines forthe AtOmS ittt e 545
Processing Declarations in Block- Structured Languages.............. 553
References, e 555
CHAPTER 15

A SURVEY OF OBJECT CODE OPTIMIZATION

INtroduction e 559
Register Allocation Lol 559
One-Atom Optimizationsoooiiiiiiiinenee tveen.. 560
Optimizations Over a Window of Atoms 560
Optimizations Within a Statement 561
Optimizations Over Several Statements 563
Optimization OverLoops............................. PR 564
Miscellaneous 567
References o 568
APPENDIX
"MINI-BASIC/ LANGUAGE MANUAL

General Form of a MINI-BASIC Program 569
NUMbeIS ... 569
Variables e 570
Arithmetic Expressions o il 570
Statements J 571
APPENDIX B

RELATIONS

Introduction 577
Representing Relationson Finite Sets 578
The Productof Relationso, 580
Transitive Closure i 582

XX

C.l
C2.
C3
C4
C5
C.6
C.7
cg
c9
C.10
C.1

Contents

APPENDIX C

GRAMMATICAL TRANSFORMATIONS

Introduction L. 591
Top-Down Processing of Lists e 591
Left Factoring............ ettt .o.. 594
Corner Substitution 595
Singleton Substitution 598
Left Recursion 599
Goal-Corner Transformationoooviuno.oi.... 602
Eliminating e-Productions. 608
Making Translations Polish.......... 611
Making a Grammar SHIFT-IDENTIFY Consistent................. 612
References 613
BIBLIOGRAPHY 619

Introduction

1.1 LANGUAGE PROCESSORS

There is a natural communication gap between man and machine. Com-
puter hardware operates at a very atomic level in terms of bits and registers,
whereas people tend to express themselves in terms of natural languages
such as English or in mathematical notation. This communication gap is
usually bridged by means of an artificial language which allows the human
to express himself with a well-defined set of words, sentences, and formulas
that can be “understood” by a computer. To achieve this communication,
the human is supplied with a user manual which explains the constructs and
meanings allowed by the language, and the.computer is supplied with soft-
ware by which it can take a stream of bits representing the commands or
programs written in the language by the human and translate this input into
the internal bit patterns required to carry out the human’s intent.

Existing computer languages vary widely in complexity, including, for
example: ' _

the instruction set of a particular computer, the machine language,

which is interpreted by the hardware or micro-programs of the ma-

chine itself;

assembly languages, the “low-level” languages that largely mirror

the instruction set of a particular computer;

control-card and command languages that are used to communicate

with an operating system;

“high-level” languages, such as FORTRAN, PL/I, LISP, etc., which

have a complicated structure and do not depend on the instruction

set or operating system of any particular machine.

1

2 Introduction

We use the term “language processor” to describe the computer pro-
grams that enable the computer to “understand” the commands and inputs
supplied by the human. Broadly speaking, there are two types of such lan-
guage-processing programs: interpreters and translators.

An interpreter is a program that accepts as input a program written in a
computer language called the source language and performs the computa-
tions implied by the program. ;

A translator is a program that accepts as input a program written in a
source language and produces as output another version of that program
written in another language called the object language. Usually the object
language is the machine language of some computer, in which case the
program can be immediately executed on that computer. Translators are
rather arbitrarily divided into assemblers and compilers which translate low-
level and high-level languages, respectively.

The common mathematical foundation of all language processing is the
theory of automata and formal languages. Since the main concern of this
book is the design of compilers, we present those portions of this theory that
are most relevant to compiler design and show practical methods whereby
this mathematics may be applied. Although the theory is presented in the
context of compilers, it can be used in the design of any language processor.

1.2 A NAIVE COMPILER MODEL

The jobbf a compiler is to translate the bit patterns that represent a program
written in some computer language into a sequence of machine instructions
that carry out the programmer’s intent. This task is sufficiently complex that
understanding or designing a compiler as a single entity is both difficult and
cumbersome. Therefore, it is desirable to consider the compilation process as
an interconnection of smaller processes whose tasks can be more easily
described.

The selection of these subprocesses for any particular compiler may
depend on the details of the language being processed and, in any case, can
best be done when taking available design theory into account. Hence, we do
not want to endorse a specific set of subprocesses. On the other hand, it is
impossible to describe a compiler design theory without having some ideas
as to a possible internal organization of a compiler. Therefore, in order to
establish a frame of reference, we introduce a rather naive but specific
model. :

In this model, the compiling job is done by a serial connection of three
boxes which we call the lexical box, the syntax box, and the code generator.
These three boxes have access to a common set of tables where long-term or

