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Preface

Many decision problems are now formulated as mathematical programs,
requiring the maximization or minimization of an objective function subject
to constraints. Such programs often have special structure. In linear pro-
gramming, the nonzero elements of the constraint matrix may appear in
diagonal blocks, except for relatively few rows or columns. Nonlinear pro-
grams may become linear if certain variables are assigned fixed values, or the
functions involved may be additively separable. Some definite structure is
almost always found in truly large problems, since these commonly arise
from a linking of independent subunits in either time or space. By developing
specialized solution algorithms to take advantage of this structure,; significant
gains in computational efficiency and reductions in computer memory re-
quirements may be achieved. Such methods are mandatory for truly large
problems, which cannot otherwise be solved because of time and/or storage
limitations. ’ Co

The past decade has seen the identification of many classes of structured
problems and the development of a great many algorithms for their solution.
This period was initiated by the publication of the Dantzig-Wolfe decom-
position principle in 1960. However, there was significant activity even before
that. Growth has been explosive, with techniques developed first for linear,
then for certain classes of nonlinear programs. The literature is now very
large. This forces a beginner exploring the field to search through a maze of
articles in many differeit journals. Even after doing so, the relationships
between the various methods are likely to be obscured. Clearly a need to
collect together the best of this literature and unify it has existed for some
time.

This book is an attempt to fill this need. It discusses some of the most
important algorithms for optimizing large systems. The emphasis throughout
is on developing the various methods in a straightforward and logical
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vi PREFACE

manner from a small set of basic ideas and principles. In so doing, relation-
ships between various procedures are made clear. Application of many
methods is illustrated by numerical examples, and there are problems at the
end of each chapter. In addition, much of the available computational ex-
perience has been included, as well as comments on various computational
options. This information should prove useful to those interested in applica-
tions, as should those sections dealing with formulation of problems. Chapter
2 deals entirely with how large-scale programs can arise from real-world
problems, and other similar examples are found throughout.

Notes for the book have been used in a one-semester graduate course in the
Operations Research Department at Case Western Reserve University and in
the Faculty of Industrial and Management Engineering at the Technion,
Haifa, Israel. The first chapter contains most of the background material on
linear and nonlinear programming needed in the rest of the text. The two
appendixes deal with convex functions and their conjugates, and with sub-
gradients and directional derivatives of convex functions. These are based on
the work of R. T. Rockafellar, are self-contained, and are of much interest in
themselves. The ideas in them are used extensively in Chapters 8 and 9 but
very little elsewhere. .

The greatest single contributor to large-scale mathematical programming is
George Dantzig. This is reflected in the contents of this volume. The contri-
butions of Arthur Geoffrion, Ben Rosen, and Philip Wolfe also play a
major role. James Schoeffler introduced me to this.area. His interest and
that of Mihajlo Mesarovic have stimulated mine. My thanks to Allan Waren
for aid in preparing Chapter 1. I wish to express appreciation to the School of
Management, Case Western Reserve University, and to the Faculty of -
Industrial and Management Engineering at the Technion for providing
secretarial assistance. Thanks also to Miss Christine Yamamoto and Miss
Ellon Waters for their excellent work in typing the first draft, and to Mrs.
Orah Naor for her fine efforts in typing the manuscript. Finally, special
thanks to my wife Louanne, who suffered with me and encouraged me
throughout.

L.S. L.



Contents

1.1
1.2

1.3

Linear and Nonlinear Programming 1

Unconstrained Minimization [

Linear Programming 20

1.2.1 Simplex Method 20

1.2.2 Revised Simplex Method 40

1.2.3 Duality in Linear Programming 46 :
1.2.4 Dual Simplex and Primal-Dual Algorithms 52

Nonlinear Programming 64

1.3.1 Convexity 68

1.3.2 Kuhn-Tucker Conditions 73

1.3.3 Saddle Points and Sufficiency Conditions &3
1.3.4 Methods of Nonlinear Programming 91

REFERENCES 102

2.1
22
2.3
24
2.5
2.6

Large Mathematical Programs with Special
Structure 104

Introduction 104

Activity Analysis 106

Production and Inventory Problem 109

Dynamic Leontief Model 110

Angular and Dual-Angular Structures 117

Linear Programs with Many Rows or Columns 122

vii



viii CONTENTS

2.7 Nonlinear Programs with Coupling Variables 130 -
2.8 Mixed-Va_riable Programs and a Location Problem 135

PROBLEMS 142

REFERENCES 143

3. The Dantzig—Wolfe Decomposition Principle 144

3.1 Introduction 144
3.2 A Theorem on Convex Combinations 145
3.3 Column Generation 146
3.4 Development of the Decomposition Principle 148
3.5 Example of the Decomposition Principle 155
3.6 Economic Interpretation of the Decomposition Principle 160
3.7 Lower Bound for the Minimal Cost 163
3.8 Application to Transportation Problems 165
3.9 Generalized Transportation Problems and a Forestry-Cutting
Example 168
3.10 Optimal Allocation of Limited Resources 171
3.10.1 General Formulation 171
3.10.2 Specializing the Model—Lot Sizes and Labor
Allocations 117
3.10.3 Computational Experience 181
3.11 Primal-Dual Approach to the Master Program 185
3.11.1 Linear Fractional Programming 185
3.11.2 Application of the Primal-Dual Method to the Master
Program 193
3.11.3 Example of the Primal-Dual Method 197
3.12 Three Algorithms for Solving the Master Program—
A Comparison 201

PROBLEMS 203

REFERENCES . 205

4. Solution of Linear Programs with Many Columns
by Column-Generation Procedures 207

4.1 The Cutting-Stock Problem 207

42 Column-Generation and Multi-item Scheduling 217

4.3 Generalized Linear Programming 230

4 4 Grid Linearization and Nonlinear Programming 242
441 General Development 242



CONTENTS ix

4.4.2 Nonlinear Version of the Dantzig-Wolfe Decomposition
Principle - 252
4.5 Design of Multiterminal Flow Networks 254

PROBLEMS 263

REFERENCES 265

5. Partitioning and Relaxation Procedures in Linear
Programming 267

5.1 Introduction 267
5.2 Relaxation 268 .
5.3 Problems with Coupling Constraints and Coupling
Variables 276
5.4 Rosén’s Partitioning Procedure for Angular and Dual-Angular
Problems 284 '
5.4.1 Development of the Algorithm 284
5.4.2 Computational Considerations 291
5.4.3 Computhtional Experience 296
5.4.4 Example of Rosen’s Partmomng Method 298

PROBLEMS 302

REFERENCES 303

6. CompactInverse Methods 304

6.1 Introduction 304
6.2 Revised Simplex Method with Inverse in Product Form = 304
6.3 Upper Bounding Methods 319
6.4 Generalized Upper Bounding 324

6.4.1 Development of the Algorithm 324

6.4.2 Example of the Generahzed Upper Bounding

Method 334

6.5 Extension to Angular Structures 340

PROBLEMS 356

REFERENCES 356

7. Partitioning Procedures in Nonlinear
Programming 358

7.1 Introduction 358
7.2 Rosen’s Partitioning Algorithm for Nonlinear Programs 359



x CONTENTS

7.2.1 Development of the Algorithm 360

7.2.2 Use of Partition Programming in Refinery
Optimization 369

7.3 Benders’ Partitioning Algorithm for Mixed-Variable

Programming Problems 370

7.3.1 Development of the Algorithm 370

7.3.2 Relation to the Decomposition Principle and
Cutting-Plane Algorithms 38/

7.3.3 Application to a Warehouse Location Problem 385

7.3.4 Numerical Example 388

7.3.5 Computational Experience 389

PROBLEMS 392

REFERENCES 394

8. Duality and Decomposition in Mathematical
Programming 396

8.1 Introduction 396
8.2 Decomposition Using a Pricing Mechanism 397
8.3 Saddle Points of Lagrangian Functions 399
8.3.1 Basic Theorems 399
8.3.2 Everetts Theorem 402
8.3.3 Application to Linear Integer Programs 404
8.4 Minimax Dual Problem 406
8.5 Differentiability of the Dual Objective Functlon 419
8.6 Computational Methods for Solving the Dual 428
8.7 Special Results for Convex Problems 435
8.8 Applications 440 »
8.8.1 Problems Involving Coupled Subsystems 440
8.8.2 Example—Optimal Control of Discrete-Time
Dynamic Systems 446
8.8.3 Problems in Which the Constraint Set is Finite:
Multi-item Scheduling Problems 449

PROBLEMS 456

REFERENCES 4358

9. Decomposition By Right-Hand-Side Allocation 460

9.1 Introduction 460
9.2 Problem Formulation 460
9.3 Feasible-Directions Algorithm for the Master Program 464



CONTENTS

9.4 Alternative Approach to the Direction-Finding Problem 475
9.5 Tangential Approximation 482

PROBLEMS 491

REFERENCES 491
Appendix 1. Convex Functions and Their Conjugates 493

Appendix 2. Subgradients and Directional Derivatives of Convex
Functions 502

REFERENCES 513

List of Symbols 515

Index 517

Xi



Linear and Nonlinear
Programming

The problem of mathematical programming is  that of maximizing or mini-
mizing an objective function f(x, - - - x,) by choice of the vector x = (x;- - - x,,)’.
The variables x; may be allowed to take on any values whereupon the problem
is one of unconstrained minimization or they may be restricted to take on
only certain allowable -values, whereupon the problem is constrained. Only
problems in which (1) the variables x; can vary continuously within the
region of interest and (2) the objective and constraint functions are continu-
ous and differentiable are considered here.

If the problem is constrained, its difficulty depends critically on the nature
of the constraints, i.e., linear, nonlinear, etc. We consider first the uncon-
strained case, then the more difficult, constrained one. The constrained case
will be divided into two parts: linear constraints and linear objective function
(linear programming) and at least one nonlinear constraint and/or nonlinear
objeéctive (nonlinear programming).

1.1 Unconstrained Minimization

Necessary and Sufficient Conditions for an Unconstrained Minimum. The
problem here is to maximize or minimize a function of » variables, f(x), with
no restrictions on the variables x. Many real-life problems are of this form,
where whatever constraints are present do not restrict the optimum. Also,
many problems in which the constraints are binding can be converted to
unconstrained problems or sequences of such problems. Since the problem
of maximizing f(x) is equivalent to that of minimizing —f(x), only the
‘minimization problem is considered.

A point x* is said to be a global minimum of f(x) if

Sx*) < fix) o
1
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2 LINEAR AND NONLINEAR PROGRAMMING * Ch. 1

for all x. If the strict inequality holds for x # x* the minimum is said to be
unique. If (1) holds only for all x in some neighborhood of x*, then x* is said
to be a local or relative minimum of f(x), since x* is only the best point in
the immediate vicinity, not in the whole space.

If f(x) is continuous and has continuous first and second partial deriva-
tives for all x, the necessary conditions for a local minimum are [3]

>x*) _ P =
=% i=L2...n ()

and that the matrix of second partial derivatives evaluated at x* be positive
semidefinite. Any point x* satisfying (2) is called a stationary point of f(x).
Sufficient conditions for a relative minimum are that the matrix of second
partial derivatives of f(x) evaluated at x* be positive definite and (2) hold.

Numerical Methods for Finding Unconstrained Minima. The most obvious
approach to finding the minimum of f(x) is to solve (2). These are a set of n
equations, usually nonlinear, in the n unknowns x,. Unfortunately the task
of solving large sets of nonlinear equations is very difficult. The function f(x)
may be so complex that it is difficult even to write out (2) in closed form.
Further, even if (2) could be solved, there would be no guarantee that'a given
solution was not a maximum, saddle point, etc., rather than a minimum.
Thus other approaches must be considered.

Gradient. If f(x) is continuous and differentiable, a number of mini-
mization techniques using the gradient of f(x), written Vf(x), are available.
The gradient is the vector whose ith component is 9f/0x;. It points in the
direction of maximum rate of increase of f(x) (— Vf points in the direction of
greatest decrease). The vector Vf'is, at any point x,, normal to the contour
of constant function value passing through x,.

Steepest Descent. The method of steepest descent for finding a local
minimum of f(x) proceeds as follows. Start at some initial point x, and
compute Vf(x,). Take a step in the direction of steepest descent, — Vf(x,),
using a step length o, to obtain a new point x,. Repeat the proceduré until
some stop criterion is satisfied. This process is described by the relations

X, given
Xip1 = Xj — o Vf(xi) i=0, 1,2,..; " (3)

where «; > 0. The process will, under very mild restrictions [4] on f(x),
converge to at least a local minimum of f(x), if the ¢, are chosen so that

Sxip1) < fx) @

for alli, i.e., if the function is made to decrease at each step. Since the function
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is initially decreasing in the directions given by — Vf(x;), there always exist
oy > 0 such that (4) is satisfied.

Step Length and Optfmicm Gradients. One way to find o satisfying (4)
is to choose «; to minimize the function

&(@) = fIxi — & Vf(x)] . ®

Note that x; and Vf(x;) are known vectors so that the only variable in (5)
is «. The adaptation of the method of steepest descent which uses (5), called
the method of optimum gradiénts [4], is described by
X, given
5= —Vf(x)

Choose a = «; by minimizing g(«) in (5),
Xiv1 = X + oSy (6)

Set i = i + 1 and repeat.
Geometrically, «, is chosen by minimizing f(x) along the direction s;
starting from x;. At a minimum,
d; ,
X =S+ ws) =0 ™
o x=aq
so the vector x; + «s; must be tangent to a contour at ¢« = «;, for dg is then
zero for small changes de. Since Vf(x;,,) is normal to the same contour,
successive steps are at right angles to one another. Practical methods for
carrying out the one-dimensional minimization are discussed later in this

section.
Stop Criteria. Some possible stop criteria are as follows:

1. Since, at a minimum 8f/dx; = 0, stop when

of =
(a) ’5)—{: <e€ i=1,2,..,n

or

(b) _Z (%)2 <e

2. Stop when the change in function is less than some limit 7, i.e.,

|fxe) — )] <7
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Others are possible. Criterion 2 appears to be the more dependable of the
two, provided it is satisfied for several successive values of i.

Local versus Global Minima. The most that can be guaranteed of this or
any other iterative minimization technique is that it will find a local minimum,
in general the one “nearest” the starting point x;. To attempt to find all local
minima (and thus the global minimum), the method most used is to repeat
the minimization from many different initial points.

Numerical Difficulties. The fact that successive steps of the optimum
gradient method are orthogonal leads to very slow convergence for some
functions. If the function contours are hyperspheres (circles in two dimen-
sions), the method finds the minimum in one step. However, if the contours
are in any way eccentric, an inefficient zigzag behavior resuits, as shown in
Figure I-1. This occurs because, for eccentric contours, the gradient direction
is generally quite different from the direction to the minimum. Many, if not
most, of the functions occurring in practical applications are ill-behaved in

y=25

FIGURE I-1 Equivalue lines of y = 16x} + (x2 — 4)?, normal steepest-
descent method.
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that their contours are eccentric or nonspherical. Thus more efficient schemes
are desirable. '

¢ Second-Order >’ Gradient Methods. Recently, a number of minimizdtion
techniques have been developed which substantially overcome the above
difficulties. What appear to be the best of these will be described in detail.
First, however, the logic behind these methods will be explained.
* Since the first partial derivatives of a function vanish at the minimum, a
Taylor-series expansion about the minimum x* yields

S(x) = f(x*) + Hx = x*)H(x*)(x — x*) ®)

where H,(x*), the matrix of second partials of f evaluated at x*, is positive
definite. Thus the function behaves like a pure quadratic in the vicinity of x*.
It follows that the only methods which will minimize a general function
quickly and efficiently. are those which (1) work well on a quadratic and (2)
are guaranteed to converge eventually for a general function. All others will
be slow, at least in the vicinity of the minimum (see Figure 1-1), and often
elsewhere. .

Conjugate Directions. General minimization procedures can be designe
which will minimize a quadratic function of n variables in n steps [5-7].
Most, if not all, are based on the ideas of conjugate directions.

The general quadratic function can be written

g(x) = a + b'x + $x'Ax : )
where A is positive definite and symmetric. Let x* minimize g(x). Then
Vg(x*) = b + Ax* = (10)

Given a point x, and a set of linearly independent directions {S0s 815+ +» Sn—1}»
constants B; can be found such that

x* = xo + z Bis: an

If the directions s; are A-conjugate, i.e., satisfy
sids; = 0, i#j, Lji=01...,n—1 (12)

and none are zero, then the s, are easily shown to be linearly independent
and the B, can be determined from (11) as follows:

n-1
S;Ax* = s;Ax, + z BisiAs; (13)

=0
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Using (12),

S;AX* = 5;A%, + B;s;As; (14
and, using (10),
- r 51
By = —(b + 4x,) 45, (15)

Now consider an iterative minimization procedure, starting ai X and suc-
cessively minimizing g(x) down the directions s, 5y, S, . . -, S, 1, Where these
directions satisfy (12). Successive points are then determined by the relations

Xig1 = X + oSy, i=0,1,...,n— 1 (16)

where «; is determined by minimizing f(x; + «s,), as in the optimum gradient
method, so that

5i Vg(x141) = 0 an
Using (10) in (17) gives
si(b + A(x; + os5)) =0 (18)
or
= — P St
o = —(b + Ax) s, 19)
From (16),
i-1
Xy = X, + Z o8, (20)
i=0
so that
i—-1
xiAs; = xoAs; + Z asjds; = xpAs, 1
i=o0
Thus (19) becomes
o = —(b + Axg) > (22)

siAs;
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which is identical to (15), Hence this sequential process leads, in n steps, to
the minimum x*.

Method of Fletcher and Powell. A method recently presented by Fletcher
and Powell [5] is probably the most powerful general procedure now known
[8] for finding a local minimum of a general function, f(x). It is de¢signed so
that, when applied to a quadratic, it minimizes in » iterations. It does this
by generating conjugate directions.

Central to the method is a symmetric positive definite matrix H; which is
updated at each iteration, and which supplies the current direction of motion,
sy, by multiplying the current gradient vector. An iteration is described by the

following:

H, = any positive definite matrix
s = —H, Vf(x)

Choose o = o by minimizing f(x; + os;),

Gy = sy
Xip1 = X + 0y 23
Hy,,=H + 4, + B

where the matrices 4, and B, are defined by

A= gtli, o= V(a1 — Vfx)
(341 (24)
B, = —H,y,y H,
' yiH y,

Note that the numerators of 4, and B, are both matrices, while the denomina-
tors are scalars. Fletcher and Powell prove the following:

1. The matrix H, is positive definite for all i. As a consequence of this, the
method will usually converge, since

2 fou+ es)| =~ VPG ) < 0 @)

i.e., the function fis initially decreasing along the direction s, so that the
function can be decreased at each iteration by minimizing down s;.
2. When the method is applied to the quadratic (9), then
(a) The directions s; (or equivalently o) are 4-conjugate, thus leading to
a minimum in » steps.



