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PREFACE

Since the nublication in 1979 of [ntroduction to Analytical Electron Microscopy
ted. J. J. Hren. J. I Goldstein, and D. C. Joy; Plenum Press), analytical electron
microscopy has continued to evolve and mature both as a topic for fundamental
scientific investigation and as a tool for inorganic and organic Tnaterials
characterization. Significant strides have been made in our understanding of image
formation. electron diffraction, and beam/specimen interactions, both in terms of the
“physics of the processes” and their practical implementation in modern instruments.
It is the intent of the editors and authors of the current text, Principles of Analytical
Electror Microscopy, to bring together, in one concise and readily accessible volume,
these recent advances in the subject.

The text begins with a thorough discussion of fundamentals to lay a foundation
for todav's state-of-the-art microscopy. All currently important areas in analytical
electron microscopy—including electron optics, electron beam/specimen interactions,
imege formation, x-ray microanalysis, energy-loss spectroscopy, electron diffraction and
specimen effects—have been given thorough atie ition. To increase the utility of the
volume 1o a broader cross section of the scientific community, the book’s approach is,
in general, more descriptive than mathematical. In some areas, however, mathematical
concepts are dealt with in depth, increasing the appeal to those secking a more
rigorous treaunent of the subject.

Although previous experience with conventional scanning and/or transmission
elertron microscopy would be extremely vaiuable to the reader, the text assumes no
prior knowledge and therefore presents all of the material necessary to help the
uninitiated reader understand the subject. Because of the extensive differences between
this book and Introduction to Analytical Electron Microscopy, the current volume is far
more than a second edition. Principles of Aralytical Electron Microscopy easily stands
alone as a coniplete treatment of the topic. For those who already use the first text,
Principles of 4nalytical Electron Microscopy is an excellent complementary volume
that will bring the reader up to date with recent developments in the field.

The text has been organized so that it can be used for a graduate course in
analytical electron microscopy. It makes extensive use of figures and contains a
complete bibliography at the conclusion of each chapter. Although the book was
written by a number of experts in the field, every attempt was made to structure and
organize each chapter identically. As such the volume is structured as a true
textbook. The volume can also be used as an individual learning aid for readers
wishing to extend their own areas of expertise since the text has been
compartmentalized into discrete topical chapters.
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I. INTRODUCTION

Energetic electrons interact with the atoms and electrons of a specimen in a wide
variety of ways, many of which can be used to obtain information when using the
analytical electron microscope (AEM). It is the purpose of this chapter to describe the
properties of these interactions so as 10 provide a basis for discussions of imaging and
microanalysis in subsequent chapters. Only a cursory examination of the complex
subject of electron interactions can be presented. A catalog of equations that describe
the various forms of electron scattering will be provided, together with examples of
the application of these equations to specific calculations. This “user’s guide” to
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electron interactions will be accompanied by references to more complete treatments,
which enable the interested reader to find additional detail, e.g., Bethe and Ashkin
(1953). The separate topic of diffraction contrast will be treated at length in Chapter 9.

II. SCATTERING

The interaction of the beam electrons with the ionic cores of the atoms and
oosely bound electrons takes place through various mechanisms of electron scattering,
in which the direction and/or energy of the beam electron are changed, with the
possibility of the energy transfer to the specimen and the consequent emission of some
form of secondary radiation. Two general types of scattering are recognized:

« Elastic scattering—The direction of the electron trajectory is altered, but the
energy remains essentially constant.

« Inelastic scattering—The magnitude of the electron velocity is altered, and the
kinetic energy (E = mv?/2, where m is the electron mass and v is the velocity)
is reduced. Energy is transferred to the atoms of the sample.

Scattering processes are quantified by means of the cross section, s, which is the
probability that a process will occur. The cross section is defined as

¢ = N/n,n; events/e~/(atom/cm?) m

where N is the number of events of a certain type (elastic scattering events, inner shell
ionizations, etc.) per unit volume (events/cm’), n, is the number of target sites per unit
volume (atoms/cm?), and n; is the number of incident particles per unit area (electron/
cm?). Although cross' sections are usually thought of as having dimensions of area
(cm?) and give the effective “size” of an atom, it should be recognized that the
dimensionless quantities present in the definition of Eq. (1) are important in properly
employing the cross section in a calculation. Thus, the complete dimensions of Eq. (1)
are events/electron/(atom/cm?),

The cross section is often more conveniently used by transforming it into a mean
free path, A, which is the mean distance the electron must travel through the specimen
1o undergo an average of one event of a particular type. The cross section can be
converted into a mean free path by means of a dimensional argument

events atoms 1 moles X p 8 _ 1 events
’ electron{atom/cm?) ° mole A g cm? X cm
or
A= A/a‘ N, p  cm/event (2a)

where N, is Avogadro’s number, A is the atomic weight, and p is the density. The
mean free path for a given type of event, i, is obtained by substitutirig the appropriate
cross section, ¢;, in Eq. (2a). If several different processes, a, b, c, etc., can occur, the
total mean free path, A, is found by calculating the mean free paths for the individual
processes, A, and combining them according to the equation

1 1
N2

(2b)
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Alternatively, we can calculate the probability that an event will take place, P (events/
e”). From the argument in Eq. (2a), the probability, P, for a given process is described

by
oN, pt

P (events/e) = A 3)

where t is the total specimen thickness.

III. ELASTIC SCATTERING
A. Elastic Scattering Cross Sections

As an energetic beam electron passes near the nucleus of an atom, the electron can
be scattered elastically by the coulombic field of the nucleus, a process known as
nuclear or Rutherford scattering. According to Wentzel (1927) and Mott and Massey
(1965), the differential cross section for Rutherford scattering corrected for relativistic
effects and screening of the nucleus by inner shell electrons is

%‘i e " sin? 6/2) + (B/8)|-2 |1 — 67 sin? (8/2) + =aB [sin@/2) — sin? @/D)|  (4a)
where the element of solid anglg d@ = 2xsin df, 9 is the scattéring angle measured
relative to the incident electron trajectory, 0 < 8 < =, Z is the atomic number, E is
the beam energy expressed in keV units in all equations, 8, is the screening parameter,
and 8 = v/c. 8 can be conveniently calculated from

B=1I1-=1[1+ (E/5S1D]}2|'? (4b)

where 511 keV is the rest mass of the electron. The screening parameter has been
given by Cosslett and Thomas (1964) as 8, = 0.1167 Z'*/E'"? (radians). The factor, «,
in Eq. (4a) (McKinley and Feshbach, 1948) has been given by Mott and Massey (1965)
as a = Z/137 for light elements. Tabulated values for a appropriate to heavier
elements have been given by McKinley and Feshbach (1948). Because the exact cross
section given by Eq. (4a) is not reducible to an analytic form due to the term, a, it is
often convenient for purposes of estimating cross sections to ignore this factor. The
uncertainty that this introduces has been calculated for several elements by Reimer
and Krefling (1976), and a figure for germanium taken from their work is shown in
Figure 1(a). In general, the magnitude of the deviation of the relativistic Rutherford
cross section from the exact Mott cross section is ~20% for Ge at 100 keV, with the
deviation varying as a function of angle. The deviation becomes larger for heavier
elements and lower beam energies, as shown for gold in Figure i(b). Réimei™and
Krefting (1976) have emphasized the importance of using the exact Mott cross section
for accurate calculations, especially in the Monte Carlo electron trajectory simulation.

The differential Rutherford cross section can be expressed in the following terms
(Bethe and Ashkin, 1953)

et 22 de

16(dxeE) [sinz(%) + (%)]2 e

or(0) =



