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The Preparation, Structure and Properties of
Ultra-High Modulus Flexible Polymers

1. M. Ward
Department of Physics,
University of Leeds.
Leeds LS29IT, UK

In this review the preparation, structure and properties of wltra-high modulus polyolefins are discussed.
First, detailed consideration is given to the preparation of ultra-high modulus polvethylene and poly-
propylene fibres by spinning from diduie solution and by gel-spinning and hot drawing. This is followed by an
account of the tensile drawing procedures which have led to the production of high modulus fibres and films
in poliethylene. polypropylene and polvoxymethylene. Finally, cousideration is given in the production of
high modulus solid section products (rod. sheet and wbe) in all these polvmers by ram extrusion, hvdro-
static extrusion and die-drawing.

It is concluded that in these different processing routes the overriding consideration is 1o achieve very
high extensional deformation at a molecidar level. The structure of the initial isotropic polymer is therefore
of key importance. the essential requirenient being an adequate but not restriciive number of mole culur
entanglements, so that the molecudar network can be stretched effectively to very high draw ratios and give
very high moleculur orientation. Molecular weight and morphology are therefore importani, together
with the drawing conditions which must permit sufficient mohility for the chains to move freely between
network entanglements.

Followng a review of present structural undersianding of these highly oriented polymers. a detailed
account is presented of mechanical behaviour. including dyvnamic mechanical relaxationy, creep and
strength. This is followed by discussion of thermal properties (melting behaviour, thermal conductivity
thermal expansion. shrinkage) and barrvier properties ( permeability 1o liguids and gases, solubility j. It
is of some practical importance that the improvements in stiffness and stength are accompanied by
substantial improvements in thermal stability, in barrier properties und in chemical resistance.
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1 Introduction

Although it had been appreciated since the early studies of Meyer and Lotmar "
in the 1930’s that there was a substantial gap between the theoretical stiffness of the
chain in several commercially available polymers and the achievement of stiffness
by existing processes, it was not until the 1970’s that this gap was bridged. It is in
polyethylene that the results have been most dramatically realised, and oriented fibres
and rods have been produced with room ‘temperature Young's moduli in the range
from 50-100 GPa 2~ "', Solution spun fibres have even been prepared with a Young's
modulus at low temperatures of 288 GPa *', which is very close to the highest theore-
tical estimate of 324 GPa .

In this review article, an account will be presented of the different methods by which
high modulus materials have been produced from flexible polymers. Much of the
discussion will be concerned with polyethylene, although comparable results have
been obtained for polypropylene and polyoxymethylene, and these will also be
considered. The initial stimulus to this research came from the quest for high stiff-
ness, but other properties have also been enhanced, including strength, thermal and
chemical stability, and barrier properties. The present article updates and extends
previous reviews '°~'? of progress in this exciting new area of polymer science.

2 Solution anc Meit Processes

2.1 Solution Spinning and Drawing

A remarkable development in polymer science was the observation by A.J. Pen-
nings '*~!*) that, when dilute solutions of polyethylene were coofed under conditions
of continuous stirring, very fine fibres were precipitated on the stirrer. These fibres
possessed a remarkable morphology consisting of a fine central core of extended chain
polyethylene with an outer sheath of folded chain polymer material, so that electron
microscopy revealed a beautiful shish-kebab structure. The possible significance of
this result was recognised by Frank '), who emphasised the importance of extensional
ag distinct from shear deformation in achieving high molecular extension and hence
high modulus. This idea was developed in elegant scries of experiments by Frank,
Keller, Mackley '"2* and their colleagues at Bristol University where converging
jets or rollers were used to create elongational flow fields in both flowing solutions
and melts. It did not prove possible, however, to produce high modulus matecrial. In
the case of the solutions the proportion of central core extended chain material to
outer sheath chain-folded material was comparatively low. In melts, it appeared that
if the conditions were chosen to reduce the rate of chain-folded crystallisation the
overall rate of solidification became so fast that flow ceased. !

A further breakthrough in this area was then achieved by Zwijnenberg and Pen-
nings ® in 1976, with the discovery that ultra high modulus polyethylene fibres could
be produced by “seeded crystallisation™ of fine fibres, winding up at very high tempe-
ratures. In the optimum arrangements for this process shown in the schematic diagram
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of Fig. 1, the seed crystal is located between the inner and outer surface of a Couette
viscometer. With the seed crystal in the middle of the gap “free growth™ was obtained
similar to that observed previously by Zwijenberg and Pennings ¥ under laminar
flow conditions. When the seed crystal comes into contact with the rotor surface.
the so-called ‘surface growth’ occurs where continuous production of a very fine
fibre can be maintained for several days. Moreover, by growing fibres at high tempe-
rature, materials with truly remarkable properties were obtained. A set of stress-
strain curves is shown in Fig. 2, from which it can be seen that a modulus of ~ 100-GPa ,
and a tensile strength of 3.5 GPa can be achieved. Detailed studies by Pennings and
his collaborators 2%, and by Keller and his collaborators 2* 2" have shown that the
formation of a very high molecular weight gel layer by absorption on the rotor surface
plays a vital role. The molecular network of the gel layer is then stretched in the
elongational flow field to give the high modulus product. The limitation of this
approach is the comparatively low production rate, which was about 150 cm/min,
limited by fibre fracture at the highest haul-off rates. _

The next major development takes up the idea of the gel layer, and combines this
with the tensile drawing of fibres at high temperature, hopefully to give a preparation
route which is more acceptable in terms of production rates. We therefore now have
a two stage process, in which a fibre of suitable initial structure is first produced.
followed by a hot stretching process, and historically two paraliel accounts have
been given more or less contemporaneously. Smith and Lemstra ' describe the
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Fig. 2. Stress (0)-strain (€) curves for some polyethylene macrofibres grown from a 0.5%, xylene so-
tution by the surface growth technique at various temperatures
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production of a gel fibre by spinning a 2% solution of high molecular weight poly-
ethylene in decalin into cold water. The gel fibre is dried and then drawn in a hot
air oven at 120 °C. At the highest draw ratio ~ 30, a fibre with 90 GPa modulus and
3 GPa tensile strength was obtained. Kalb and Pennings ?® describe the production
of a “porous” fibre by spinning a 5%, solution of polyethylene in paraffin oil. Again
the fibre is dried, and in this case drawn in a temperature gradient from 100-148 °C
to a draw ratio of 16. This gave a product with 106 GPa modulus and 3 GPa tensile
strength.

The preparation of polyethylene fibres with strengths in the range 3-4 GPa by the
gel spinning route described by Pennings as discussed above, required spinning ex-
trusion speeds of about 1 m/min. Although higher spinning speeds could be achieved
by stretching the-filaments in the molten state, this led to a dramatic reduction in the
final strengths after drawing. For example a strength of less than 0.5 GPa was obtained
for a winding up speed of 20 m/min. Pennings and his colleagues > have speculated
that this relates to recoiling of the molecules leading to the generation of elastic
turbulences which then disrupt the entanglement network so that the molecules are
not elongated in the drawing process. Smook and Pennings * have shown that the
addition of 1% (weight) of Aluminium stearate (AXOOC,,C,,),) permits the tensile
properties after drawing to be retained to comparatively high wind up speeds (Fig. 3).
It has been proposed that an absorbed aluminium stearate layer will be formed
between the flowing polymer solution and the die wall. This layer then inhibits the
occurrence of elastic flow instabilities. The effectiveness of adding aluminium stearate
is limited to low concentrations. At higher concentrations, the aluminium stearate
provides the formation of more intramolecular entaglements which are not effective
in stretching the molecules.

Pennings and his collaborators ) have examined the hot drawing behaviour of
the range of spun fibres. The fibres were stretched between moving rollers, and the
draw ratio determined as the ratio of the take-up speed on the second roller to the

40 T Y
g
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Fig. 3. Tensile strength at break, Oy, after hot-drawing against take-up speed during gel-spinning of
UHMWPE at different concentrations of aluminium stearate (wt.- %) in the spinning solution (Die:
¢= l45cm a = 6*and D = 1.8 mm). With permission of the publishers Chapman & Hall Ltd, (C)
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input speed on the first roller, which corresponded to a constant velocity of
2.65 cm/min. The importance of a parallel oriented shish kebab morphology at the
spinning stage, as well as the topology of the entanglement network, has been emphasi-
sed. Smook 3! has envisaged the hot drawing process as involving the deformation of
a structure consisting of alternating bundles of elongated molecules and clusters of
unoriented molecules, which are connected to each other by entanglement couptings.
Pennings and his collaborators 2°3!:32) have measured the axial tensile force as a
function of time for stretching the fibres from a draw ratio of 3.5 to the maximum
draw ratio over a wide temperature range. The results were analysed on the basis that
stress is generated overcoming viscous flow. An apparent elongational viscosity is
then derived as a function of temperature and draw ratio. It is suggested that therg -
are three distinct temperature regions identified by different activation energies. There
is a low temperature regime associated with the flow of separate fibrils and the un-
folding of lamellar crystals, an intermediate regime where the lamellae meit and the
fibrils aggregate, and a high temperature regime of very high chain mobility where
slippage of individual chains accur. Although these speculations are attractive, it is
clear that there is still room for a more comprehensive phenomenological treatment.

Some further studies of the gel spinning and drawing process have been undertaken
by Manley and co-workers 33=3%, In polyethylene, their efforts were concentrated
on two aspects. First, there was the drawing of dried gel films at ambient temperatures.
These gel films had a structure similar to single crystal mats where the lamellar crystals
are oriented parallel to the film surface. Draw ratios of 20 could be obtained, much
greater than for cold drawing of high molecular weight bulk polymer. Moreover, by
annealing these gel films at 110 °C, the maximum draw ratio could be increased to 30.
This improvement was attributed to the increase in entanglements to act as inter-
lamellar crosslinks and give more effective drawing.

In a further development Peguy and Manley ) report the drawing of polypropylene
gel films. The key result is summarised in Fig. 4, which shows the modulus/draw ratio

L0
30F
w20+
2
2
10+
0 1 1 1 1 !
10 20 30 40 50 60
: Draw ratio

Fig. 4 Young's modulus, draw ratio relationship for dry polypropylene gel films at 140 *C. With
permission of the publishers Butterworth & Co. (Publishers) Ltd. )
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relationship for drawing at 140 "C. It is remarkable to note that values of dra}v ratio
as high as 57 were recorded, and modulus results were obtained for draw ratio 47.5,
where a value of 36 GPa was obtained. This is very close to the theoretical estimates
and crystal strain values of ~40-45 GPa.

2.2 Molecular Entanglements and the Stretching
of a Molecular Network

In the one-stage solution surface-growth technique as well as the two-stage gel spin-
ning and drawing route, it has been established that the absorption of the very high
molecular weight polyethylene on the rotor surface and the formation of a gel layer
are key features. In the original method of Pennings and his co-workers the entangle-
ment network of the gel is stretched in the elongational flow field of a Couette or
Poiseuille flow apparatus, as originally postulated by Frank '®), and clearly illustrated
in subsequent experiments by Frank, Keller and Mackley '7 2% ‘

It can therefore be concluded that the production of high modulus polyethylene
occurs by the stretching of a molecular network in the solid phase deformation routes
of tensile drawing, hydrostatic and ram extrusion and die drawing, and for the solution
routes of one-stage surface growth and gel spinning and drawing. In all cases the
limiting draw ratio A___relates to the chain length between entanglements.

For a simple rubber-like network. the maximum draw ratio varies with the number
N, of statistical chain segments between crosslinks as

R = (N2 , (H

In the solid phase. support for a similar contention has come from the drawing of
polyethylene terephthalate, combined with stress optical measurements, and also for
the behaviour of craze fibrils in a range of glassy polymers.

Smith, Lemstra and Booij *” developed a similar argument for a gel-spun fibre.
The molecular weight between entanglements in the undiluted polymer melt is denoted
by M_. The:number of statistical chain segments between entanglements is given by

where m_ is the molecular weight of a statistical chain segment. In a solution with a
polymer concentration c exceeding the value for onset of coil-overlap, the molecular
weight between entanglements (M,),,, is greater and is given approximately by

(M) = (Q/OM, = M /o (2)

where ¢ is the bulk density of the polvmer and ® is the polymer volume fraction.

Smith et al. assume that the entanglements are equivalent to crosslinks, so that
N, =N

€ c’

Combining equation.s (1) and (2) then gives

1/2

'{max gel = (Nc)soln'z (h'e/“(p’l':2 = 'lnmx solid(p* 12 (3)



10 I. M. Ward

where A, . and A__ ., are the limiting draw ratios for the gel spun and drawn
and solid phase drawn polymers respectively.

M, for high molecular weight PE is reported by Smith et al. as 1900, giving
N, =136and ), ,.u = 3.7.

The results obtained by drawing gel spun polyethylene fibres at different tempe-
ratures are shown in Fig. 5. It can be seen that the relationship between A, g and
®~'? predicted by Eq. (3) holds to a good approximation. Furthermore, the intercept
at ® = 1 for a draw temperature of 90 °C was found to be 3.8, in good agreement
with the value of 3.7 estimated above. The higher values of A, at higher tempera-
tures were attributed to chain slippage.

Pennings and his colleagues ?' have remarked on the influence of the hot drawing
process in reducing the number of entanglements from that existing in a quiescent
solution. For example, for a 5 % solution of polyethylene in paraffin oil, with ® =~ 0.6,
a value for M_ .. of 17x 10? kg/kmol can be estimated, corresponding to about
12 entanglements per chain. By subjecting fibres to a series of cross-linking treatments
by irradiation, it was possible to determine the number of effective network chains
in the gel for each irradiation treatment on the basis of swelling measurements.
Extrapolation to zero radiation dose then gave a value of 2 entanglements per chain
in the unirradiated drawn fibre, a marked reduction from the value of 12 for the solu-
tion.

80 v —r— T v v —r

8

Maximum draw ratio
£~
o

(#)

Fig. 5. Maximum draw ratio vs (initiat polymer volume fraction)™ ! at the indicated temperatures.
With permission of the publishers John Wiley & Sons, Inc. (C).

2.3 Crystallisation During Melt Flow Under Pressure

High modulus polyethylenes have also been produced by the application of pressure
" to the polymer when it is molten under conditions of extrusion through a narrow
capillary. It appears that in one case at least these methods differ in kind from those
which involve stretching the molecules either in solution, or in the solid phase.



The Preparation, Structure and Properties of Ultra-High Modulus Flexible Polymers 11

Van der Vegt and Smit 3® observed that blockage could occur when molten poly-
ethylene is extruded in a capillary rheometer under conditions where the polymer
would be expected to remain fluid. This observation was followed up by Southern and
Porter 349 who examined the effect of a sudden minor reduction in temperature
(by 1 °C say) during the extrusion of polyethylene in an Instron rheometer. It appeared
that the large increase in pressure which occurred was due to crystallisation in the
elongational flow field, which leads to termination of flow. A transparent strand of
polyethylene could be extracted from the capillary. This varied in properties across
its section and the overall dynamic modulus of 6.6 GPa, measured at 110 Hz, was
comparatively low *'). However DSC measurements indicated a high melting com-
ponent which was attributed to extended chain material, and later research described
the measurement of moduli of a higher order of magnitude. In subsequent work by
Porter and his colleagues 4, the pressure was maintained so that the plug of solid
crystallised polymer was slowly extruded. Later studies by this group have moved
to straight extrusion of a pre-formed billet. This is akin to ram-extrusion and hydro-
static extrusion and is discussed elsewhere in this review.

Southern and Porter’s original studies were extended in a more precise fashion by
Keller and co-workers > in a series of experiments where the flow of polymer in the-
capillary rheometer was deliberately stopped by sudden insertion of a needle valve.
This produced a sudden rise in pressure, and crystallisation of the polymer. After
cooling to room temperature, the plug of polymer was removed and was found to
possess & very high modulus of ~ 70 GPa. Its structure was however quite different
from other high modulus polyethylenes. A clear SAXS pattern was observed corre-
sponding to a lamellar texture with a long period of ~ 300 A. The comparatively low
melting point showed that there was no extended chain material present. On the
contrary, transmission electron microscopy revealed a structure of interlocking
penetrating lamellae. It was suggested that the high modulus is due to the constraints
on the rubber-like material between the lamellae. similar to that observed when
sheets of steel are laminated with thin layers of rubber. Due to the incompressibility
of the rubber and the lateral constraints imposed by bonding to the steel plates, the
axial deformation of the rubber is severely restricted.

3 Solid Phase Deformation Processes

3.1 Tensile Drawing

The developments in high draw polyethylene stemmed initially from an exploratory
examination by Andrews and Ward ** of the influence of molecular weight and
molecular weight distribution on the drawing of linear polyethylene at ambient
temperatures. In spite of considerable scatter in the results, due primarily to diffi-
cultic§ in controlling polymer morphology in the small scale spinning and drawing
experiments, it was concluded that the draw ratio was sensitive to H‘,. the weight
average molecular weight. A second important observation was the excellent correla-
tion between the modulus of the drawn fibres and the draw ratio, the modulus increas-
ing from 4 to 20 GPa as the draw ratio was increased from 7 to 13.



