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Preface

The theme of this volume continues that of this open-ended treatise: a
timely assessment of the current status of the multifunctional role of Ca**
in cell function. The first volume focuses on calmodulin; this one extends
the coverage to the metabolism of Ca**, other Ca?*-binding proteins, and
various Ca?* functions; future volumes will address appropriate topics
under active investigation.

The organization of Volume II is divided into three sections. The first
three chapters deal with the chemistry and metabolism of Ca**; the next
five describe various Ca®>*-binding proteins in addition to calmodulin. The
functions of Ca?*, some mediated by calmodulin and some by other pro-
teins, are discussed in the last six chapters. As in the first volume, each
chapter reflects the style and interest of the contributors. The length of
each chapter varies somewhat, depending on the need and the extent of
coverage that was felt necessary.

The field of Ca®** research continues to accelerate noticeably, with a
good number of articles focusing on calmodulin. According to a computer
search published by a recent Current Contents, the number of articles
bearing calmodulin in their titles in 1979 was 213, the term calmodulin
having been introduced the year before; by 1980, it quintupled to 1013.
The increase appears unlikely to abate in the near future.

One of the aims of this treatise is to keep students and investigators in
all disciplines of biological research abreast of the developments in this
rapidly expanding field; another is to stimulate new research for a better
understanding of the intricate regulatory mechanisms underlying cellular
function. I thank all the contributors for their splendid efforts in this
endeavor.

This volume is dedicated to my brother, who spared no effort to see a
young lad receive a proper education.

Wai Yiu Cheung

Xy
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I. INTRODUCTION

In a recent article (Levine and Williams, 1981) we described the inor-
ganic chemistry of the calcium ion based upon work with small complex
ions. We used the general Eq. (1) to refer to biological activity:

Activity o [Ca?*) K, p(structure factors) )

where [Ca2t] is the concentration of the free calcium ion in the compart-
ment under consideration (e.g., in general >10"3 M outside cells and
<1077 M in cells at rest), K, is the binding constant of the calcium ion to
any free aqueous ligand L to give the complex CaL, p is a partition
coefficient which modifies K, to give the binding in the phase (membrane)
or structure where the complex CaL acts. This partition coefficient will
also describe the effect of fields, mechanical or electrical, on the stability
of CaL in the structure. The product [Ca?*]1K,,p therefore describes the
binding of calcium to L but does not describe the activity, since activity is
related to binding through certain rate constants. The rate constants are a
function of the structure and energy of the ground and excited states of
CaL. The relevant structures were given in the previous article. In that
article data on small calcium complexes were used to describe all four
terms in Eq. (1). We also described data for Na*, K+, and Mg?*, since the
activity of calcium is modulated by the (competitive) activities of these
ions (and the proton).

This chapter reviews the conclusions of our previous article before
describing the properties of calcium bound to proteins, especially as re-
vealed by our nuclear magnetic resonance (NMR) studies:

1. [Ca?*] can be at any level from about 1072 to 1078 M1 liter in dif-
ferent biological compartments.

2. The binding of calcium to complexes occurs through carboxylate
and neutral oxygen donor centers. The binding strength can be varied
readily from 102 to 102 by varying the number of donor centers and their
stereochemical arrangement. Competition from Mg?*, Na*, K*, and H*
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can be set at any chosen level by suitable choice of ligand no matter how
large K, is.

3. The partition coefficient p is difficult to describe, but a simple part of
it is the effect of an applied potential ¢ when p is proportional to ¢¥'#7;
see below.

4. The structure of calcium complexes varies from 6- to 12-coordinate,
grouping at about 8. The stereochemistry differs strikingly from that of
magnesium in that the geometry is irregular both in bond length and bond
angle. The calcium ion does not have a fixed geometry and readily forms
cross-links.

5. The rates of exchange of ligands, i.e., the ability of the calcium ion to
change structure, both in on/off reactions and fluctuational rearrange-
ments of the ligands on the surface of the calcium ion, are fast—much
faster than the corresponding rates for the magnesium ion. The energy of
‘‘excited’” structures is often low.

In many ways, especially related to points (4) and (5), sodium and potas-
sium ions are much more like the calcium ion than the magnesium ion is.

We shall assume that this information from model studies is immedi-
ately relevant to the description of calcium activity in biology. This chap-
ter will then be divided into three major sections: a description of
calcium-binding proteins, a short description of calcium binding to lipids
and saccharides, and a survey of the relationship of these data to calcium
activity in biology.

A. Use of Nuclear Magnetic Resonance Spectroscopy

Elsewhere we have described the use of NMR spectroscopy in the
study of proteins (Campbell et al., 1975; Levine et al., 1979). Here we give
an outline of the method, since many of the observations described below
depend directly on an understanding of the procedure. The proton NMR
spectrum of troponin C is shown in Fig. 1. Different regions of the spec-
trum have been assigned to particular types of amino acids, and for some
resonances the assignments are to particular amino acids in the sequence
(Levine et al., 1977a). The assignment of peaks in such detail allows us to
follow the effect on the protein of changes in solution conditions such as
those involving pH, [Ca?*], salt concentration, and temperature. Now we
can interpret the changes in position of the resonances in terms of changes
in structure (Levine et al., 1977b). This is possible because the energy of a
transition, an NMR absorption peak, depends upon the chemical groups
that are nearest-neighbors to the atom which has absorbed the energy. It
is especially helpful to an understanding of solution structure at this stage
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if a crystal structure is available, even though the two structures may not
be too similar. For example, the NMR resonance energies of groups in
phospholipase A, are entirely consistent with the fold found in the crystal
structure (Aguiar et al., 1979). Various techniques are available for aug-
menting the structural evidence from direct absorption NMR spectros-
copy, for example, by studies in the presence of (lanthanum) shift probes
(Levine ¢t al., 1979). Lanthanide ions usually replace calcium ions fairly
exactly.

Apart from evidence from line positions we can use the line width or
relaxation properties. Especially valuable are nuclear Overhauser effects
(NOEs) (Noggle and Schirmer, 1971) which are seen as changes in line
intensity on irradiation of another line belonging to a nearest-neighbor
amino acid. These NOE data give distances in molecules directly. Line
widths can also be affected by relaxation probes, e.g., Gd3* or Mn?*,
cations which readily replace calcium and give structural information
(Campbell and Dobson, 1979; Levine et al., 1979).

Considerable information about molecular tumbling and internal seg-
mental or side-chain motion is also available from the NMR spectra.
Again without going into detail, differences in relaxation times of different
lines often seen in line widths can be used to assess (1) surface residue
motion (such as that of lysines), (2) restricted motions (e.g., flipping of
aromatic rings, valines, and leucines), and (3) motion of the main chain
based on studies of a-CH or NH protons (Williams, 1978; Levine et al.,
1979). A major finding is that many calcium proteins have mobile interiors.

In this chapter we shall rarely refer to the primary NMR data, since we
prefer to illustrate the major conclusions of our work, but a detailed
appreciation does require reference to the original NMR studies.

B. The Distinction between Proteins and Small Molecules as
Ligands

It is important to observe that proteins, as ligands, have specific fea-
tures. Because of their size, their fold energy may equal or exceed that of
the binding energy of the metal to the protein. It follows that the way in
which the metal binds, its energy and stereochemistry, and the way in
which the protein folds are mutually dependent (Williams, 1977; Levine
and Williams, 1981). Furthermore the mobility of the protein is con-
strained by the metal. One way of seeing this is to consider a ligand such
as EGTA, with four carboxylates on a highly mobile chain, in comparison
to four glutamates in a protein. When EGTA binds to a metal, the binding
has a stereochemistry and energy dictated by the metal ion and the en-



