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Preface

In view of the large amount of recent work on the thermodynamics of non-

. equilibrium processes, there is a real need for a book giving a clear exposition of

the thermodynamic formalism applicable to nonfinear thermodynamic pro-
cesses at a mathematical level, accessible to physicists and to theoretically
inclined biologists and chemists. This book attempts to fill this need by making
a definite statement in regard to the present-day status of linear and nonlinear
thermodynamics. '

For the past two decades, two schools of non-equilibrium thermodynamics
have dominated the literature: the school of ‘rational’ thermodynamics of
Coleman and co-workers and the school of ‘generalised’ thermodynamics that
is associated with the names of Glansdorff and Prigogine. Although both these
schools praise themselves for their all-embracing coverage of the field, I have

- never seen ‘generalised’ thermodynamics applied to elastic materials with

memory, nor have I seen ‘rational’ thermodynamics used in the analysis of
chemical instabilities. The apparent incompatibility of the theories may
bewilder the reader who- wants to understand what non-equilibrium
thermodynamics is all about. .

Moreover, the vastly different usage of concepts and notations has not
helped matters. A case in point is the ambiguity in the meanings of ‘dissipation’
and ‘irreversibility’. These terms are often regarded as synonymous, and the
precise meanings of each left in doubt. Confusion also arises over the meaning
of the term ‘nonlinear’ in thermodynamics. While everyone knows what a
nonlinear differential equation looks like, its usage in thermodynamics is far
from being self-evident.

In this book I attempt to resolve such types of ambiguity and misconception.
After the introductory chapter on equilibrium thermodynamics, which serves
to form a common background and as a reference for all future developments,
the book is divided into two parts. The first part (chapters 1—4) is a critical
analysis of the classical theory of non-equilibrium thermodynamics and its
more recent offshoots. The second part (chapters 5-9) deals with my own
interpretation of what a theory of non-equilibrium thermodynamics should
include. In the same way that equilibrium thermodynamics offers criteria for its
validity so, too, non-equilibrium thermodynamics must provide for similar
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criteria. My point of view is that these criteria must ultimately come from

nonlinear mechanics and kinetic stability theory. This is to say that equilibrium

~ thermodynamics itself does not provide a broad enough basis that wnll

incorporate all types of kinetic process.

This book is formalistic rather than applicative in chdracter. My feelmg is .

that the presentation of a self-consistent and clearcut thermodynamic

formulation will automatically lead to its application. I hope that the -
interdisciplinary character of the book will allow the readér to draw upon the

many interesting analogies that exist among the seemingly diverse branches of
macroscopic physics, chemistry and theoretical biology.

I would like to express my deep gratitude to Gabriel Stein of the Hebrew -

University, Jerusalem, whose encouragement and advice had a great deal to do

with making this book a reality. A very special role has been played by my wife

Fanny, to whom I am greatly indebted.
ot .
" Lucrino, Italy : . ~ BERNARD H. LAVENDA -
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Introduc‘tion

Formulations of non-equilibrium thermodynamics

In the first part of this book (chapters 1—4), there is given a brief exposition of
classical equilibrium and linear thermodynamics and a critical review of two.
recent formulations of non-equilibrium thermodynamics.

Chapter 1 briefly presents the classic formulations of equilibrium thermody-
namics. There is a twofold objective: (1) to accentuate the inherent differences
between the axiomatic formulation of Carathéodory and the phenomenologi-
cal approach of Gibbs, and (2) to evaluate the relative merits of the two

equilibrium formulations for the construction of a non-equilibrium theory. The

conclusion is reached that although Carathéodory’s theory is mathematically

more rigorous, it lacks the elements which would make it readily adaptable as a

basis for the dcvelopment of a theory of non—equlhbnum thermodynamics.
Chapter 2 gives a chronological account of the developments in linear

‘thermodynamics. Onsager’s derivation of a class of reciprocal relations in

which the flux is the time derivative of an extensive thermodynamic variable,
forms the corner-stone of linear thermodynamics. The advantage of placing
Onsager’s derivation in its historical original form is that it affords a better
grasp of the reciprocal relations and their specificity. An objection is raised
concerning the Onsager —Casimir demonstration, in that their interpretation
of the principle of microscopic reversibility at equilibrium is apparently
incongruous with the non-conservative nature of the phenomenological
regression laws.

Chapter 3 presents a résumé of one school of thought which uses a formal
statement of the second law, the so-called Clausius —Duhem inequality, as a
restriction on the typés of thermodynamic process that can occur in elastic

- materials. Why this restriction? Since the second law does not, in general,

constitute a criterion of stability, this restriction would necessarily exclude
various forms of nonlinear thermodynamic processes which are stable kineti-
cally. In the last section of this chapter there is an example of where the
restriction on the form of the constitutive relations leads to a contradiction; the
results invalidate the Clausius — Duhem inequality. '

Chapter 4 is a review of the work of still another school of thought, which
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uses the sign criteria of the second variation of the entropy and its time-rate-of-
change as criteria of stability in the small. The inability to make a direct
connection with the second law, on account of the fact that the first variation of
the entropy does not vanish in a non-equilibrium stationary state; makes it

* necessary to turn to a weaker justification of the proposedstability criteria.
based on an analogy with a Liapounov function. Notwithstanding the fact that
Liapounov’s second method is addressed to stability in the large, the analogy is
found to be spurious. One of the two criteria of Liapounov’s second method is
satisfied automatically by supposing the system to be in a state of local
equilibrium. The criteria of local equilibrium have nothing whatsoever to do
with the asymptotic stability properties of kinetic processes. Furthermore, itis
shown that the sign criterion of the time-rate-of-change of the second variation
of the entropy does not coincide with the necessary and sufficient conditions of
stability that are obtained from Liapounov’s first method. = -

Quasl-thermodyunuc lpi:roach to nonlinear thermodynamics

In the second part of the book (chapters 5-9), there is undertaken a detailed
exposition of an approach to nonlinear thermodynamics which is based on a
confluence of thermodynamic and kinetic concepts regarding evolution and
stability. For the major part, the analyses are limited to thermodynamic
systems that are found in the immediate neighbourhood of a non-equilibrium -
stationary state. Only in the last sections of chapters 7 and 9 is the approach
extended to include the phenomena of nonlinear periodic processes in space and
time that may occur at a finite distance from an unstable non-equilibrium
stationary state.

The fundamental idea is that the principles of thermodynamics are com-
patible with, and can be sharpened by, the precise criteria of kinetic stability
analysis. In carrying out the implications of the fundamental idea, it was found
necessary to correlate thermodynamic variables, needed to specify the thermo-
dynamic state, with, mechanical variables that satisfy the same types of
differential equation. This approach is to be regarded as ‘quasi-
thermodynamic’ in character and this is what distinguishes it from the
thermodynamic approaches that have been discussed in the first part of the"
book. . : ,

In chapter S, the development of nonlinear thermodynamics is begun, having
already appreciated the fact that linear thermodynamic processes evolve to a
state of least dissipation of energy or equivalently to a state of minimum
entropy production. This implies that the evolution of linéar thermodynamic
processes can be accounted for by a single thermodynamic potential. The
rejevant thermodynamic principle states that the entropy production is equal to
the energy dissipated. E R o

In nonlinear thermodynamics we are dealing with processes that occur in -
open systems in which the external forces prevent the system from Felmging to
equilibrium. We can no longer expect that the linear thermodynamio pnnclp}e ‘
will be valid o that the evolution of such processes can be accounted for in
terms of the properties of a single thermodynamic potential. It is found
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necessary to derive an extension of the thermodynamic principle which will
govern the evolution of nonlinear thermodynamic processes. ’

It is now found that the dissipation function is no longer synonymous to the
entropy production but rathex that their difference is a measure of the absorbed
power. This is to say, the absorbed power appears as the time-rate-of-change of
the entropy less that which is dissipated. The thermodynamic principle of the
balance of power forms: the basis for the discussion of non-equilibrium
variational principles in chapter 6 and the quasi-thermodynamic stability
analysis of chapter 7. . - . : o

In chapter 6, there is a fairly complete treatment of the variational principles
of linear and nonlinear thermodynamics. How non-equilibrium thermodyn-
amic variational principles are constructed is shown by applying constraints on
the principle of least dissipation of energy. In lincar thermodynamics, the -
principle of minimum entropy production is obtained as a corollary of the
aforementioned principle anld does not constitute a minimum principle in itself.

Throughout, this chapter deals with a ‘conditioned’ rather than a free

- minimum of the dissipation function. In other words, we are not merely

interested in determining the values of the velocities. for which the dissipation
function becomes a minimum but we are asked, at the same time, to consider
only those values of the velocities for which the nonlinear thermodynamic
principle of the balance of power is simultaneously fulfilled. .

An appreciation is gained of the relation between thermodynamic variational
principles and those of élassical mechanics. The thermodynamic variational
principle is analogous to the classical Lagrangian function whose stationary

value yields the phenomenological equations corresponding to the classical

equations of motion. Rather than obtaining the principle of the conservation of
energy through integration, we multiply the phenomonological equations by
their conjugate velocities and sum them to obtain the thermodynamic principle

of the balance of power. , ,

. ‘Inchapter 7, there is raised the question of whether thermodynamic stability
criteria can supplement the necessary and sufficient conditions for asymptotic
stability which are obtained from Liapounov’s first method. The precise but
particular results of Liapounov’s first method are employed and general
thermodynamic criteria of stability under certain circumstances are obtained.

The advantages of the quasi-thermodynamic analysis are: (1) it may provide
general criteria for asymptotic stability that are not manifested by the

'integration of the variational equations, and (2) the stability analysis, under

certain conditions, may be reduced to the application of definite criteria that
have a thermodynamic significance. It is found that in all cases where the

- thermodynamic force is conservative, the necessary and sufficient conditions

for asymptotic stability are that the dissipation function and the second

variation of the entropy. must be positive and negative definite, respectively.

The vanishing of either quadratic form means that the stability is critical.

* Inchapter 7, Liapounov’s first method is used to extract definite thermodyn-
amic stability criteria from the complex power equation. Attention is then’
turned to the symmetries of the phenomenological coefficient matrices. These
symmetries determine whether or not the exactness conditions are satisfied
which guarantee the existence of scalar thermodynamic potentials. In turn, by
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means‘of a mechanical analogy, the symmetries are related to conservative or
non-conservative forces. The quasi-thermodynamic analysis provides a
classification of the various forms of system motions in terms of their influence
o}t:a sgstem stability and prepares the way for the field analyses of the following
chapter. ) . g

In chapter 8, methods to analyse nonlinear thermodynamic processes which
are non-conservative are developed, recalling from the preceding chapter that
the only case in which definite thermodynamic criteria of stability cannot be
obtained is when a non-conservative thermodynamic forcé exists. In this '
chapter the situation is remedied.

The field analysis is particularly well adapted to two types of critical
nonlinear thermodynamic phenomenon: (1) multistationary state transitions
which are signalled by the vanishing of the second variation of a scalar potential
called the velocity potential, and (2) rotational processes that are caused by
non-conservative thermodynamic forces. :

Methods are developed that use both velocity and force fields. When the
system motion can. be effectively reduced to a half-degree of freedom, the
velocity potential method determines bifurcation points that are analogous to
equilibrium critical points in second order phase transitions. Rotational -
processes require at least a single degree of freedom and the velocity field
analysis can only describe the kinematics and not the dynamics of the motion.

" The dynamics of rotational processes are obtained from a therinodynamic
force field analysis which parallels the classical development of macrosgopic
field theoties. The only difference is that real space is replaced by configuration
space. Non-conservative forces are now shown to, be derivable from
thermodynamic vector potentials. Thermodynamic field principles and equa-
tions that govern the field are obtained from the constrained principle of least
dissipation of energy. The new factor in the thermodynamic field principles is
the presence of an energy flux density which implicates an external energy
source in the maintenance of nonlinear thermodynamic rotational processes.

In chapter 9, there is formulated an internal state variable representation of
thermodynamic processes belonging to the continua. After the derivation of a
general thermodynamic principlé of the continua, we limit ourselves to the
analysis of isothermal processes under constant strain. These processes are
governed by the following thermodynamic principle: the difference between the
absorbed power and the energy flux across the surface of the system appears as
the time-rate-of-change of the entropy less the energy which is dissipated. The
thermodynamic principle allows non-equilibrium thermodynamic variational
principles of the continua to be formulated and thus both the variational
equations and the relevant thermodynamic stability criteria are obtained.

Considered next are thermodynamic evolutionary criteria that are derived by
means- of the maximum principles of partial differential equations. It is
appreciated that the internal configuration of continuous systems can be
determined uniquely and solely from an analysis of the flows across their
boundaries. A simple example is a system without any heat sources: the
temperature at any point in the system cannot be greater than the temperature
at the surface. Any heat flow resulting from a difference in temperature will be
directed into the system. It is shown that & positive directional derivative of the
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entropy flux at the surface of the system provides the condition for the absence
of a positive maximum or a negative minimum in the spatial distribution of the
variation of an internal state variable. These spatial distributions cause a
decrease in the system entropy which must be compensated by an entropy influx
from the surroundings. '

Chapter 9 is concluded by an extension of the quasi-thermodynamic
approach to the analysis' of truly nonlinear processes. In much the same spirit
that thermodynamic and kinetic concepts were interrelated in chapter 7, an
averaged thermodynamic variational principle that employs the averaging
techniques of nonlinear mechanics is now formulated. The method is directed
to the analysis of the asymptotic evolution of nonlinear dissipative wavetrains
and it is found, under certain conditions, that they give rise to a limit wave
phenomenon. This brings us to the present-day frontiers of nonlinear
thermodynamics.
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1 Equilibriu.m Thérmodynamics

.The purpose of this chapter is to compare the two different formulations of
equilibrium thermodynamics only in so far as they bear on the theories of linear
and nonlinear thermodynamics. The two formulations are generally associated
with the names of Carathéodory (1909, 1925) and Gibbs (1902). Carathéodory’s
theory is axiomatic in character, whereas Gibbs’s theory is phenomenological.
Although it has been suggested that Carathéodory’s theory may eventually
provide a better mathematical basis for a theory of non-equilibrium thermodyn-

- amics (Eckart, 1940), most of the recent theories of non-equilibrium thermodyn=~
amics possess a predominantly Gibbsian character.
Equilibrium thermodynamics is concerned with (1) the definition and proof
" of existence of the entropy and absolute temperature, anb {2) the methodology
by which equilibrium properties of thermodynamic’ systems can be character-
ised. Carathéodory s theory is concerned primarily w1th the axiomatisation of
(1), while Gibbsian thermodynamics is directed: td (2). Although the two
formulations of equilibrium thermodynamics are consistent Mth one another,
they differ in their aims and points of view.,There is no a pno:\a reason why we
should select one over the other as a basis for non-equilibrium thermodynamics.
The classical theory of equilibrium thermodynamics is therefore a blend of
two essentially different approaches. Carathéodory’s theory is a mathematical
formulation of the empirical results of Clausius (1850) and Kelvin (Thomson,
1848). It sought to replace thermodynamic arguments based on Carnot cycles by
a differential geometry dealing with Pfaffian differential forms. In other words,
Carathéodory’s theory allows us to obtain all the mathematical consequences of
the second law of thermodynamics without recourse to any particular physical
model (Chandrasekhar, 1939). One of the major achievements of
Carathéodory’s theory is, the definition and proof of existence of the entropy
solely in terms of mechanical variables, such as pressure and volume.

Carathéodory’s axiomatic approach was developed and expounded upon by

Born (1921). Although the theory has been frequently discussed in the literature

(Born, 1949; Buchdahl, 1949, 1954, 1955; Chandrasekhar, 1939; Eisenschitz,

1955; Landé, 1926; Margenau and Murphy, 1943) there have been no substantial

advances made since 1921, with the important exception of Landsberg’s (1956) -

geometrisation of Carathéodory’s axiomatic approach.
Carathéodorys theory is not concerned with the characterisation of the !
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equilibrium properties of thermodynamic systems. In Gibbsian thermodyn-
amics, on the other hand, attention is focused on the system. The primitive
concepts of entropy and absolute temperature are assumed not to be needing
definition or existence of proof, It uses these concepts to obtain a more detailed
description of equilibrium thermodynamic systems in terms of their chemical
and phase structures. One of the major advantages of Gibbsian thermodyn-
amics, over Carathéodory’s theory, is that it provides criteria for its validity. One
assumes, in Carathéodory’s theory, that all transformations are non-singular,
whereas in Gibbs’s theory the singularities of certain transformations are shown
to coincide with the limits of system stability (e.g. critical points). However, one
of the major disadvantages of Gibbsian thermodynamics is that an axiomatic
approach, comparable to Carathéodory’s theory, is still lacking
(cf. Tisza, 1966). » ’

The two formulations of equilibrium thermodynamics can be discussed in
terms of the geometrical structure of their relevant spaces. A major tool in
equilibrium thermodynamics is the geometrical method based on the ‘thermo-
dynamic’ space. In Carathéodory’s theory, the space is spanned by all the
independent variables that are needed to describe the thermodynamic system.
The only criterion for their presence in the thermodynamic space is that they
must be physically measurable. Hence, in Carathéodory’s formulation no
specific choice of the space is made; in particular, no geometrical distinction is
made between extensive and intensive thermodynamic variables. This was first
pointed out by Ehrenfest (1911), who concluded that the geometrical distinction
between extensive and intensive variables requires additional axioms than those
contained in Carathéodory’s theory. The geometrisation of -Carathéodory’s
theory was accomplished by Landsberg (1956, 1961).

In contrast, Gibbsian thermodynamics requires a particular space — the
Gibbs space — which is spanned by all the independent extensive variables.
Although in the original presentation (Gibbs, 1902), the construction of the
Gibbs space was ad hoc, it did lead to the representation of thermodynamic
potentials as quadratic forms which form the primitive surfaces in the Gibbs
space. The achievements of Gibbs’s geometrisation of his thermodynamic
theory is really quite remarkable when it is realised that the basic geometrical
elements of metric and orthogonality are wanting.
~ The mathematicai foundations were discovered, at a later date, by Blaschke
{1923) who showed that the geometry of the Gibbs space is an affine differential
geometry. Although a metric cannot be defined, it is possible to define a parallel
projection which replaces the orthogonal projection in the ordinary Riemann
theory of curvature. Furthermore, by representing the entropy as a quadratic
form, it is possible to obtain something similar to a metric. That is, the Gibbs
space is one in which ‘volumes’ but not ‘lengths’ are measurable. The volume is
represented by the determinant of the matrix that is associated with the
quadratic form. Therefore, in contrast to Euclidean geomietry, parallelism
. replaces orthogonality, and volumes but not lengths are measurable in the
Gibbs space. In addition, different spaces can be generated that are spanned by
both extensive and intensive variables, through the Legendre transforms which
replace extensive variables by their conjugate intensive variables in the
fundamental expression for the thermodynamic potential.
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The attributes of the axiomatic and phenomenological formulations of
equilibrium thermodynamics are now considered in greater detail. Since the
laws of thermodynamics are formulated with the greatest-amount of logical
simplicity in Carathéodory’s theory, his formulation will be considered first.
There will then follow a discussion of Gibbsian thermodynamics which takes
many of the concepts, introduced by Carathéodory, and makes practical use out
of them. ‘

11 Carathéodory’s theory

1.1.1 Definitions and conditions of equilibrium
Thermodynamic systems are classified according to whether they are ‘isolated’,
‘closed’ or ‘open’. In an isolated system there is no communication with the
outside world; that is, there is neither energy nor matter transfer between the
system and its environment. In a closed system there is energy but no matter
exchange with the outside worid. Finally, in an open system there is both an
exchange of energy and matter between the thermodynamic system and its

-environment. ‘ '

Since equilibrium thermodynamics deals with isolated systems, how is it
possible to establish the conditions of equilibrium? In other words, if the
isolated system is not in-equilibrium then there is the problem of defining a
thermodynamic potential for the non-equilibrium state. Alternatively, if the
System is in equilibrium it is no longer possible to determine the conditions of
equilibrium. To resolve this paradoxical problem, Carathéodory introduced the
ingenious device of ‘composite systems’ which was later carried over into
Gibbsian thermodynamics (cf. section 1.2). That is, in order to obtain the
conditions of equilibrium, in a theory that does not define non-equilibrium
states, it is necessary to introduce partitions that divide the isolated system into a

. number of subsystems. The partition or ‘wall’ permits the passage of a certain
form of energy which thereby forces a new relation upon the parameters of the
subsystems that it separates (Landsberg, 1956).

Carathéodory’s theory considers only two types of partition that are involved

. with the transfer of heat: (1) an adiabatic partition which is restrictive to the
passage of thermal energy, and (2) a diathermal partition which allows the
passage of thermal energy. Diathermal partitions are used to'establish the
conditions ‘of thermal equilibrium.’ But as Landsberg (1956) points out, the
definition of a diathermal partition precedes the introduction of the notions of

* heat and thermal equilibrium in the axiomatic formulation. This is only one of a
number of ‘criticisms that can be lodged against Carathéodory’s formulation
(cf. Landsberg, 1956).

In Gibbsian thermodynamics, the classes of partitions are increased so that
other criteria of equilibrium can be obtained in addition to those of thermal
equilibrium. Both adiabatic and. diathermal partitions are impermeable to the
transfer of matter, The two other types of partition, that are considered in
Gibbsian thermodynamics, are: (3) a semipermeable partition that restricts the
passage of certain constituents, and (4) a permeable partition which is non-
restrictive to the passage of matter. Both these partitions permit the exchange of
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thermal energy between the subsystems. It can be appreciated that partitions (3)
and (4) establish the conditions of chemical equilibrium only after the system has
attained thermal equilibrium. This is entirely reasonable since energy, but not
matter, can be exchanged, the converse of which is certainly not true.

In order to obtain the conditions of thermal equilibrium, an isolated system is
divided mto a number of subsystems by means of diathermal partitions. For
simplicity, consider the case of a single diathermal partition which separates two
subsystems. Each of the subsystems is assumed to be fully characterised in terms
of their pressures, p and p’, and their volumes, ¥V and V". In order for there to
exist an equilibrium between the two subsystems, the four parameters must
enter into a relation of the form )

F(pV,p,V')=0 (1.1.1)

that depends only on the properties of the two subsystems. In Carathéodory’s
theory, (1.1.1) is the condition of thermal equilibrium. The condition of thermal
equilibrium may be extended to any number of subsystems by the transitive
property: if two subsystems are in equilibrium with another subsystem, then
they will be in thermal equilibrium with each other when they are brought into
thermal contact. This means that the condition of thermal equilibrium has the
form :

T(p, V}-T(p, V)=0 . (1.1.2)

where T and 7" are the empirical temperatures of the two subsystems. Thermal
equilibrium then implies the equivalence of the empirical temperatures, namely
T=T.

Another set of definitions concerns the types of thermodynamic process that
can be performed. A ‘quasi-static’ process is one that is carried out infinitely
slowly so that the system can be considered as passing through a continuous
series of equilibrium states. Here there exists an ambiguity in the definitions ofa
quasi-static process'and a “reversible’ process (Landsberg, 1956). The two types
of process are generally regarded as being synonymous. Any other process is
called ‘non-statical’ which has the connotation of being ‘irreversible’.-

1.1.2 The first law
The first law of thermodynamics is nothing more than the principle of
conservation of energy that applies to systems where heat is produced or
absorbed (Planck, 1954). In Carathéodory’s theory, the internal energy is
defined solely in mechanical terms in contrast to the concept of heat whichisa
derived one, having no independent significance apart from the first law
{Chandrasekhar, 1939). ‘

In an adiabatic process which brings the system from an initial state (1) toa
final state (2), the work done on the system is equal to the increase in its internal
energy, namely

E,~E ={'dW (d@=0) (1.1.3)

The internal energy E is a function of state; it depends only on the initial and final
states. If the transition 1 — 2 were to occur along a non-adiabatic path (dQ # 0),
the work W would depend upon the path. For a non-adiabatic path, the
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quantity of heat supplied to the system is
j:dQ=Er+&_J:dW ' C (1.1.4)

It is a remarkable fact that, whereas the work done on the system and the heat
supplied to the system are not point functions, their sum, the internal energy, isa
point function. This means that dW and dQ are not ‘exact’ or ‘perfect’
differentials of scalar functions. Only their sum

dE = dW +dQ _ (1.L.5)

is a perfect differential. In physical terms, we can attribute a certain internal
energy with a given thermodynamic state but we cannot speak about the
quantity of heat that the system possesses-in that state. Moreover, if two
subsystems are separated from one another by an adiabatic partition, then by '
definition

E=E,+E, : C(1.16)

Expressed in words, the internal energy of the system is equal to the sum of its
components. This will, in general, not be true when two subsystems are brought
into contact. There will then be an additional energy due to the contact. The
contact energy is proportional to the surface area in common -between the
subsystems, so that if the volume to surface ratio is large, as might be expected in
all thermodynamic systems, then the additional energy is negligible and we
suppose the additive law (1.1.6) always to be valid.

1.1.3 The second law

‘The first law of thermodynamics does not provide fora unique determination of
physical processes. For example, the conservation of energy cannot tell us in
which direction the heat is flowing between hot and cold bodies. In other words,
the first law does not determine the direction in which a process takes place.
From the viewpoint of the first law, initial and final states are entirely equivalent
(Planck, 1954). ’

" The second law of thermodynamics can be considered a law of ‘impossibility’.
It tells us which processes are physically unrealisable. The empirical basis of the
second law is found in the Clausius-Kelvin principle. One phrasing of the
second law is: without ‘compensation’, it is impossible to transfer heat from a
- cold to a hot body (Chandrasekhar, 1939). The mathematical formulation of the
second law is due to Carathéodory, who showed that the absolute temperatuie
is an integrating denominator for dQ. The second law can then be expressed as
the inability to reach states arbitrarily near to a givén state by means of an
adiabatic process. In order to appreciate Carathéodory’s theprem it is necessary
to consider the mathematical properties of Pfaffian differential equations
(Chandrasekhar, 1939; Goursat, 1922; Margenau and Murphy, 1943; Schouten
and van der Kulk, 1949).

Consider a Pfaffian differential expression in ‘two variables

dQ = X(x,p)dx + Y(x, y)dy (L1
If
J 0 # 0(x;.32)— Qx50 (1.1.8)
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then dQ is not the true differential of a certain function. This means that dQ
cannot be integrated; it depends on the path from 1 — 2. For if dQ were a perfect
differential of some scalar function f. with dQ = df, we would have

df =0, fdx+d, fdy ' : (1.1.9)
Comparing (1.1.7) and (1.1.9) we find '

X(x,y)=0d,f and Y(x, y)=0,f . (1.1.10)
or

ax 0,0, f=0,Y _ (1.1.11)

which is the exactness or integrability condition for the scalar funcnon -f-
Condition (1.1.11) 1s, in general not satisfied. .
The Pfaffian differential equation, corresponding to (1.1.7), is

dQ = Xdx+ Ydy =0 (1.1.12)

Equation (1.1.12) defines a direction in the tangent plane to the one parametric
family of curves which are the solutions to (1.1.12) at any given point. This is to
say that we can equally as well write (1.1.12) as

d,y=-X/Y (1.1.13)
which is tangent to the curve
f(x,y) = C = const . (1.1.14)

at a given point. From (1.1.14) it follows that d f= 0 which is expresscd
explicitly as

O f+0, fd,y =0 C(L1.15)
Inserting (1.1.13) into (1.1.15), we obtain

0f~0,fX/Y=0 (1.1.16)
or ' - ’

Yo, f=X3,f= XY/®, say (1.1.17)

where @ is a function of x and y. (If dQ = df then ® = 1.) We can now write
(1 1.17) as

X=040,f and Y=00,f (1.1.18)
Then the substitution of (1.1.18) into (1.1.7) leads to
dQ =0(0, fdx+4¢, fdy) =0 df . (L.1.19)

In other words, if we divide the Pfaffian expression (1.1.7) by the integrating
denominator ® we obtain an exact differential. This is not surprising since a
Pfaffian expression in two variables will always admit an integrating de-
nominator. Moreover, if a Pfaffian differential expression admits one integrating
denominator, it will admit an infinity of them. We can replace f by any function
S = S[f(x,y)] for which '

S[f(x,y)] = C = const ‘ (1.1.20)



