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Preface

THE MAJOR PURPOSE of this book is to supply the user with a table of
trigonometric functions that is arranged specifically to expedite the so-
lution of both plane and spherical triangles. For any one degree from
0° to 180° the user has in full view the natural sines, cosines, tangents,
cotangents, secants, cosecants, doversines, and haversines, as well as the
logarithms of these various functions. The natural functions and their
logarithms have been printed in black and the logarithms, located in
adjacent columns, have been printed in blue. Instead of having the
tunctions arranged in the conventional semi-quadrant manner, there
are two separate pages for each consecutive degree from 0° to 180°.

The arrangement presented in this book eliminates certain incon-
veniences encountered when one uses a trigonometric table that is
arranged in the conventional semi-quadrant manner. The arguments
and functions are found at locations that are consistent for each de-
gree throughout the table presented in this book.

The natural trigonometric functions have been calculated to either
six significant figures or to six decimal places, whichever case yields a
minimum number of digits for the function. The logarithms of the
functions have been calculated to six decimal places. A table of six
place logarithms of the numbers 1 to 10000 has been included at the
end of the trigonometric function table.

The haversine (one-half of the versine) was used extensively in the
nineteenth century and the early twentieth century by marine navi-
gators. The “law of haversines” was used to solve the spherical ob-
lique triangle encountered in celestial navigation. The “law of haver-
sines” js a simplification of the law of cosines for the spherical triangle.

-1



Today, the celestial navigator no longer has to solve the spherical
oblique triangle in a formal manner. The triangle has been solved and
the solutions tabulated as a function of the variables involved in the
celestial navigation problem.! As a consequence of the modern meth-
bds of celestial navigation, accurate haversine tables are not found as
readily today as they were earlier. The haversines are included in this
book since they do have a distinct advantage when one is called upon
to solve the spherical oblique triangle for a numerical answer.

It is the author’s opinion that the haversine method for solving the
spherical triangle could be used to an advantage by a marine navigator
engaged in off-shore cruising (or sailing) aboard a small craft in which
space may be limited. The haversine method of celestial navigation
requires only one small book of trigonometric functions, whereas some
of the modern methods require several volumes.2

A trigonometric function which simplifies the law of cosines for the
plane oblique triangle has been defined and tabulated in this book.
The new function is called the doversine (doubled versine). The dover-
sines and their logarithms were first computed by means of the Illiac
digital computer. A second computation using an IBM 650 computer
provided an excellent check for any errors that might have occurred
during the calculations.

‘A summary of trigonometric relations that are pertinent to the solu-
tion of both plane and sperical triangles is given in the Introduction.
Both the professional person and the student will find the arrangement
of tables presented in this book workable and convenient for the rou-
tine solution of both plane and sperical triangles.

The author expresses his appreciation to Dr. J. P. Nash of the Uni-
versity of Illinois for having the Illiac digital computer programmed
to calculate the doversines; to Mr. Russell Altenberger of the Iowa
State University for many valuable suggestions concerning the IBM
650 computer and associated IBM equipment; to Professor Joseph
Senne of the Iowa State University for encouraging the publication of
the doversines; to the Iowa State University Press through which publi-
cation has been realized; and to my wife who helped with the tedious
job of checking the computer output for errors.

LeoN KENNEDY
n—‘_I-‘o_r-exampIe, the U. S. Hydrographic Office publication H. 0. 214.
*This does not apply to the Ageton method of celestial navigation. The Ageton

method is contained in one small volume, Manual of Celestial Navigation, by
Arthur A. Ageton, D. Van Nostrand Company, Inc., New York, 1952.
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Introduction

TRIGONOMETRIC FORMULAS that are necessary for the solution of both
plane and spherical triangles are summarized at the end of this section.
Since the versine function is encountered only rarely, a short discussion
of the “law of haversines” and the “law of doversines” is in order.

The “law of haversines” is derived from the law of cosines for the
spherical triangle in the following manner:

cos a = cos b cos ¢ 4 sin b sin ¢ cos A.
Since vers x — 1 — cos x,
1 — versa = cos b cos ¢ 4 sin b sin ¢ (I — vers A),
= cos(b — ¢) — sin b sin ¢ vers A,
= 1 — vers(b — ¢) — sin b sin c vers A.
Therefore, vers a — vers(b — ¢) 4 sin b sin c vers A.
Since hav x = 14 vers x,
. hav a = hav(b — ¢) 4 sin b sin c hav A.

The haversine function is symmetrical about zero degrees, i.c.,
hav 30° = hav(—380°). Therefore, it makes no difference whether or
not the quantity (b — c) is positive or negative. Many books’ suggest
that this difference is taken by always subtracting the smaller of the
two quantities from the larger. A notation that is sometimes used to
represent this operation is (b ~ ¢). Since the symbol (~) has several
other meanings in mathematics, it has been decided to use a different
notation to represent this operation. The notation employed in this
book will be d,,..

The notation d,. is defined as meaning the difference of the sides b
and ¢ obtained by subtracting the smaller side from the larger side.
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The “law of haversines” for the spherical oblique triangle is:
hav a = hav(d,.) + sin b sin ¢ hav A.

Cyclic changes of the letters in the above expression yleld the other
two forms of the “law of haversines”:

hav b — hav(d,,) 4 sin c sin a hav B,
and bhav ¢ = hav(d,;) 4 sin a sin b hav C.

If the three angular sides of a spherical triangle are known and it
is desired to compute one angle, the “law of haversines” may be used in
the following form:

A = Hav1 [csc b csc ¢ Vhav(a + d,.) hav(a — d,,c)] .

The other two forms of this expression may also be obtained by
cyclic changes of the letters. These expressions for one of the angles in
terms of the sidés may be solved quite easily by the use of logarithms.

It should be pointed out that since the haversines are positive for
all angles (and the sines and cosecants are positive in the first and sec-
ond quadrants), the signs for the terms in the previous expressions can-
not change as the angles vary from 0° to 180°. This is one advantage
that the “law of haversines” has over the law of cosines for the spheri-
cal triangle.

The “law of doversines” is derived from the law of cosines for the
plane triangle in the following manner: .

a2 = b% ¢ — 2bc cos A.
Adding 2bc to each side of the law of cosines gives
a2 = b?2 4 ¢ — 2bc cos A + 2bc — 2bc.
Factoring, a? = (b — c)® 4 2bc(l — cos A).
Now, 2(1 — cos x) = 2 vers x = dov x.
Therefore, a? = (b — ¢)? 4+ bc dov A.

Employing the notation dy, as previously defined, the “law of dover-
sines” for the plane triangle is:

a® = d?,, 4 bc dov A.
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Cyclic changes of the letters in the previous expression yield the
other two forms of the “law of doversines”:

b2 = d?, 4 ca dov B,
and cz = d2,, 4 ab dov C.

The “law of doversines” may be stated as follows:

In any plane triangle, the square of one side is equal to the differ-
ence of the other two sides squared, plus the product of the latter two
sides and the doversine of their included angle.

There are several advantages that the “law of doversines” has over
the law of cosines for the plane triangle. First, like the haversines, the
doversine function is positive for all angles. Therefore, the term
bc dov A is always added to d?,,. The “law of doversines” eliminates
one squaring operation. -Since the 2 is defined as part of the trigono-
metric function, there is one less step in calculating. The “law of
doversines” is very convenient to use in a situation where none of the
angles are known, all three sides of a plane triangle are given, and it
is necessary to calculate one of the angles. Solving the “law of dover-
sines” for A, we obtain:

A=Dov [‘“ + &) 2= "'*)].

Cyclic changes of the letters in the above expression yield the other
two forms:

ca

B — Dovt [(b+de.> (b—deo]’

and

C — Dov-! [(c+ dy) (c— d.b)]
ab :

Unlike the expressions obtained by solving the law of cosines for

one angle, the preceding expressions can readily be solved by the use
of logarithms.
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A formula that is frequently used in place of the law of cosines for
an explicit expression of an angle in terms of the sides is:

A= fealsn,

s(s — a)

where s = Y 4+ b 4 o).

Clearly, the expression involving doversines is easier to evaluate
than the above tangent formula.

The tables presented in this book are self-explanatory. It is felt
that the people using this book of tables will be familiar with the meth-
ods of interpolation. If this is not the case, the reader should consult
a trigonometry textbook.

Quadrant | sin x | cos x | tan x }cotx ’ sec x | osc x ’dovx hav x
Lo+ o+ o+ ]
o+ - - - -+ ]+
111 — - + + — ~ + +
Vool -+ - -+ =+ |+

Fig. 1 — Signs of the trigonometric functions from 0° to 360°



-~ Doversine x

s Versine x

-~ Haversine «x

180°
J

— -] Cosine x

Fig. 2 — A comparison of the versine, doversine, and haversine functions
with the cosine function.



Basic Trigonometric Formulas and Identities

Fundamental identities:
csc x = 1/sin x, sec x = 1/cos x,
tan x — sin x/cos x, cot x = 1/tan x,
cot x — cos x/sin x, sin*x 4 cos? x = 1,
1 4- tan2x — sec?x, 1 4 cot®x = csc3x
'
Reduction formulas:
sin  (90° =+ x) = cos x, cos (90° + x) = = sin x,
tan (90° + x) = 3 cot x, cot (90° £+ x) = =z tan X,
sec (90° + x) = - osc x, csc (90° 4 x) = sec x.
sin (180° + x) — = sin x, cos (180° x x) = — cos x,
tan (180° + x) = =+ tan x, cot (180° + x) = =+ cot x,
sec (180° + x) = — sec x, csc (180° = x) = = csc x. '
sin (270° + x) = — cos x,  cos (270° x x) — =+ sin x,
tan (270° + x) = 3 cot x,  cot (270° + x) = 3 tan x,
sec (270° + x) = + csc x,  csc (270° + x) = — sec x. ¥
sin(—x) = — sin x, cos (—x) = cos x,
tan(—x) — — tan x, cot (—x) = — cot x,
sec(—x) = sec x, csC (—X) = — csc x. ;
Sum formulas: ’

sin x 4 sin y = 2sin 4 (x+4y) cos 14 (x — ),
sin x — sin y = 2 cos 14 (x-}y) sin 15 (x — ¥),
008 x - cos y = 2 cos 14 (x-}-y) cos 15 (x — ¥),
cos x — cos ¥y = — 2 sin ¥ (x4y) sin 14 (x — y).

Formulas for the sum and difference of two angles:

sin (x +- y) = sin x cos y =+ cos x sin y,
cos (x =+ y) = cos x cos y = sin x sin ¥,

tan (x + y) = tan x =+ tan y

l+ tanxtany
Double-angle formulas:

sin 2x =— 2 sin x cos x, cos 2x = cos3x — sin3x,
2tan x

tan 2x = ———————,
1 — tan? x



Half-angle formulas:

x 1 — cos x x 1 4 cos x
$in e = + | ———ore, cos — = =+ —_—
2 J 2 2 J 2

x sin x
tan — = ——
2 1 4 cos x

Product formulas:

sin x siny = 4 cos (x — y) — V4 cos (x 4 ¥),
sin x cos y = ¥4 sin (x — y) 4 e sin (x + ),
€os x cos y — V4 cos (x — y) + V4 cos (x 4 y).

Miscellaneous formulas:

versine x — vers x = 1 — cos x
haversine x — hav x = 14 vers x
doversine x = dov x = 2 vers x
coversine x — covers x = 1 — sin x
exsecant x = exsec x — (sec x — 1
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SOLUTION OF PLANE RIGHT TRIANGLES

B
The right triangle can be solved if
at least one side and one angle (in
¢ ¢ addition to the 90° angle) are
known, or if at least two sides are
A b c known.
EXAMPLES:
Given b, c: Given a, c: Given a, b:
b
A = Cost (——) B — Cos! (—a—) A = Tan? (1)
C c b
B = 90° — A A =090 —B B —=90° - A
a— btan A b= ccos A ¢ = bsec A
Given A, a: Given A, b: Given A, c:
B = 90° — A B =90°—-A B = 90°—A
b = acot A a = btan A a—ccosB
c=asecB ¢ = bsecA b = ccos A
Given B, a: Given B, b: Given B, c:
A =90°—-B A =90°—B A = 90° — B
b = acotA a = btan A — ccos B
c — asecB ¢ = bsec A b=ccos A
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SOLUTION OF PLANE OBLIQUE TRIANGLES

Law of sines: “Law of doversines”:
i b == a? — di, 4 bc dov A,
sin A sin B sin C
B b2 — d2 -+ ca dov B,
2 = d, + ab dov C.
¢ [s)
A b c

The minimum data required to solve the plane oblique triangle

may be classified into four distinct cases. These four cases are as fol-
lows:

CASE 1.  Given all three sides.

CASE 1I.  Given any two sides and their included angle.

CASE 1I1. Given any two angles and any one side.

CASE 1V. Given any two sides and an angle opposite one of the sides.

An example of each case is:

CASE |, given a, b, c.

d — d b
A = Dov? @+ bc'))c(a v :|, B = Sin-ll:— sin A] ,
a

C = 180° — (A + B).

CASE I, given C, a, b.

c :\/ d, + abdovC, B = Sin-1|:£ sin CJ,
c
A = 180° — (B + Q).

CASE Ill, given A, B, a.
C= 180° — (A 4+ B), b=asinBcsc A, ¢ — asin C csc A.

CASE 1V, given A, q, b.

. b .
B:Sm-l[?smA:,, C=180° — (A 4 B), c=asin CcscA.

A rough sketch of the triangle to be solved will be very useful be-
fore beginning the solution. The sketch need only be accurate enough
to tell whether the angles sought are obtuse or acute. Case IV is some-

times called the ambiguous case since there may be two solutions to
the triangle.
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SOLUTION OF SPHERICAL RIGHT TRIANGLES

C=90° A

The spherical triangle (right or oblique) differs from the plane tri-
angle in the following ways:

1)

2)

3.

The sides of the spherical triangle are segments of great circles
and described in‘terms of angles rather than length. Therefore,
a solution of the spherical triangle gives no information as to
the physical size of the triangle. The curvature (or radius of
curvature) must be known in order to ascertain the length of
the sides and the area of a spherical triapgle.

The sum of the three sides of a spherical triangle is less than
360°; i. e.,a 4+ b 4 c < 360°,

The angles of a spherical triangle are dihedral angles of the
planes defined by the sides. The expression A 4 B 4 C = 180°
does not apply to the spherical triangle. The sum of the angles
of a spherical triangle is greater than 180° and less than 540°; i.
e, 180° < A 4+ B 4 C < 540°.

The spherical right triangle can be solved if at least two quantities
are known in addition to the 90° angle.! Ten formulas are available
for the solution of spherical right triangles. John Napier (1550 - 1617)
invented a device known as Napier's Wheel in order to help one re-
member these ten formulas. Construct Napier's Wheel as shown being
careful to keep the quantities in the same order as they appear in the
spherical triangle. The 90° angle (C) is omitted. The symbol A means
the complement of A; i. e.,90° — A.

* Two solutions exist when the given parts are a side and the angle opposite.
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NAPIER'S WHEEL

NAPIER’S RULE 1. Referring to Napier's Wheel, the sine of any
part is equal to the product of the cosines of the opposite parts.
NAPIER'S RULE II. The sine of any part is equal to the product
of the tangents of the adjacent parts.
For example:

sin Z = cos B cos a.
Since sin A — cos A, and cos B = sin B,
then cos A = sin B cos a. 1)

sin A = tan € tan b..
Since sin A = cos A, and tan € = cot ¢,
then cos A = cot c tan b. 2

The following eight formulas could be found in a like manner:

sinb —sincsinB, cos ¢c = cos acos b, cos ¢ = cot A cot B,
cos B — tan a cot ¢, sin a — sin ¢ sin A, cos B — cos b sin A.
sina — tan b cot B, sin b — tan a cot A,

The following propositions from solid geometry are quite useful:
1. A side and angle opposite it are always of the same quadrant.

I1. If the hypotenuse is less than 90°, the sides are of the same quad-

rant. If the hypotenuse is greater than 90°, the sides are of opposite
quadrants.
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SOLUTION OF SPHERICAL OBLIQUE TRIANGLES

The minimum data required to solve the spherical oblique triangle
may be classified into six distinct cases:

CASE 1. Given three sides.

CASE 11. Given two sides and the included angle.

CASE II1. Given three angles.

CASE 1V. Given two angles and the included side.

CASE V. Given two sides and an angle opposite one of these sides.
CASE VI. Given two augles and a side opposite one of these angles.

Cases V and VI are known as the ambiguous cases. There may be no
solution, a single solution, or two solutions.

The following expressions may be used to solve the spherical oblique
triangle:

“Law of haversines”:

hav a = hav(dy.) + sin bsin c hav A,

A = Hav! [csc b osc c\/hav (a + dyo) hav (a —d. ],

hav b = hav(d,,) 4 sin csin a hav B,

B = Hav! [csccosc a\/ hav(b + d.) hav(b — d) ],

hav ¢ = hav(d,;) 4 sin a sin b hav C,

C = Hav-1[csca csc b\/ hav(c 4 d,;) hav(c — dg,) ].
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Law of sines:
sin a sin b sin ¢

sin A sin B sin C

Gauss’s formulas:
cos V5 (a — b)

sin YA+ B) = 2 cos G,
sin 14(A — B) = fi‘ﬁ%(}‘ﬂ cos 4G,
cos V4(A + B) = &s:{jg/zicﬂsin 14C,
cos V4(A — B) = % sin 14C.

Napier’s analogies:
sinl, (A —B)  tanlj(a —b)

sin 14(A + B) tan V4c

sin 14 (a — b) tan 1, (A — B)
sin lg(a 4 b) = cot 14C ’
cos 14(A — B) tan 14 (a 4 b)
cos s (A+ B) tan Yhc
coslp(a—b)  tanls (A 4 B)
cos l4(a + b) - cot 14C .

The following facts may be useful:

1. The order of magnitude of the sides of a spherical triangle is the
same as the order of magnitude of the respective angles, i. e., if
a>c>b, then A>C>B.

Il. The sum of two sides of a spherical triangle is greater than the
third side.
I11. Half the sum of any two sides is of the same quadrant as half the
sum of the opposite angles.
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