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PREFACE

T]sus monogléph i designed for a reader who has some acquain-
tance with problems of axiomatics and with the standard methods

- of mathematical logic. No speclal knowledge of set theory and its

axiomatics is presupposed

Thé Part of Professor Fraenkel glves 4n mtroduotlon to the
original Zermelo-Fraenkel form of set-theoretic axiomatics a.nd an
account of its following developmeént.

.My part is an independent presentation of a formal sysbem of
axiomatic set theory. The formal development is carried out in
detail, only in chapt. VII, which is about the applications to usual
mathematics, it seemed necessary to restrict myself to some indi-
cations of thé method of englobing analysis, cardinal arithmetic and

- abstract algebraic theories in the system. These indications, however,

certainly will be sufficient to make appear the posmbxhty of such .
an englobing.

In composing my part I had the continual and most efficient
help of Dr. Gert Miiller, with whom I have talked over all details.
I express him my very hearty thanls.

To North-Holland Publishing Company and its Director Mr. M. D.

' Frank I am thankful for the obligingness in the technical questions

~and the elegant accomplishment of the rather complicated print.

Ziirich, March 1958 . | PavL BrrNAYS
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HISTORICAL INTRODUCTION

1: INTRODUCTORY REMARKS

The axiomatio method in- mathematies, which started with )

Euclid’s Elements and was revived in the 10th century, again

- chiefly for the purpose of geometry{ has made an enormous progress "~

since the beginning of the 20th century; almiost all fields of mathe-
matics and logic, and some of physics and other scxenoes, have
since undergone &n axiomatic analysis.

While the axiomatic method is appropriate to the homogeneous
and continuous domain of geometry to a greater extent than to
arithmetic (where a constructive development from simple objects
to complicated ones is natural) in set-theory the axiomatic point
of view is particularly appropriate for two reasons. First, the anti-
- nomies of set-theory which appeared about the turn of the 20th
. ocentury, show that the quasi-constructive prooedure 1) of Cantor’s

set-theory has to be restricted in bome way, and thus an axiomatio
determination of the restriction becomes imperative. Secondly, the
fact that all other mathematical branches can be incorporated in
set-theory, leads to the idea of setting up a comprehensive axiom
system #) of set-theory in which the axiomatic theories of other
disciplines can be embedded.

It is natural that, after the shock of the antmomxes, theastress
should be laid on restricting the concept of set axiomatically in such
- & way that the known contradictions were eliminated and new ones
were not to be expected. This was the trend of Zermelo and his
followers (since 1908), as described in Nos. 2-6 below. After confid-
ence in the intrinsic soundness of the theory had been re-established
by the success of this step, the questlon arose whether the restric-

1) - A quite different constructive theory developed by L. E. J. Brouwer
- since 1907 in accordance with the principles of neo-intuitioniam, is outside
the subject of the present monograph. See Fraenkel-Bar Hillel [1958], oh. IV,

» ')Ad:ﬂmtwmpmbmmvomtemhubeenntupmm
Mathematica.
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tions 1mposed on the extent, of the set-concept were not exaggerated.
Therefore one endeavoured to approach the exact borderline that
geparates the legitimate theory from the zone of contradictions;
this tendency is exhibited in more recent researches (see No. 7
below, and the main part of this monograph ).

A few other early attempts to found seb-theory axiomatically
have either not had sufficient success or not been developed to a
point which allows a’final judgment 2).

While a discussion of the axiomatic method in general is beyond
the scope of this monograph, a few informal explanations with
special reference to set-theory are required. The axiomatization
of set-theory renounces a definition of the concept of set and of
the relation between a set s and its elements. The latter, a dyadic

1) Cf. Borgers [1849] and the comparative surveys of Zermelo’s and
other methods in Wang [1949] and [1950] and Wang-McNaughton [1953].
(For all references, see the Bibliography at the end of the monograph.)

¥) Schoenflies [1921] takes the relation between whole and part (proper
subset) as the primitive relation. This procedure at best attains a theory
of magnitude which does not provide for the properties of irreducible parts
(elements; see Merzbach [1925]); this also applies to finite sets. —— The
idea of replacing the element-set relation by the part-whole relation is
also the basis of Foradori [1932). '

The system of Finsler ([1926], [1933]; Gonseth [1941], pp. 162-180) is
based on three axioms only. While by.means of the first two axioms it can
be proved (see Baocr [1928]) that any consistent model of Finsler’s system
admits of a further extension—as does, for instance, Hilbert’s system. of
geometrical axioms when the axiom of Avchimedes is dropped-—the third
axiom postulates completeness in a sense analogous to Hilbert’s axiorn.
For this reason, as well as for the doubts connected with Finsler’s notion
zirkelfrei, his system is hardly tenable.

The axiomatic system of Gonseth [1933] (cf. [1936]) denies the assumption
that, given a sét, it is settled whether a given object belongs to the set or
not. Hence the fundamental propositions on the non-equivalence of sets
forfeit their validity and it is prernature to judge the difficulties involved.

The intention of Ting-Ho [1938] is similar to that of Zermelo, but the
treatement is not strict enough to allow comparison. Cf. also Giorgi [1941].
Systems of a “logicistic’’ type, such as Ramsey {1926], Quine {1937] and
[1940] (cf. [1841] and [1942]), Wang [1954], are not included in the subjecb
mattor of this monograph; neither Lorenzen {1955]
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lelatmn (or predicate), is denoted by &; zes rea.ds ‘z is contained
in, is an element of, belongs to, the set &7 or “‘s contains (the
element) 2°’, and its negation is x £s. ¢ enters as an (undeﬁned)
primitive relation, the membership relaiton. It is unsymmetrical
and the valnes of its second argument, possibly with the addition
of the null-set (see below), constitute the domain of sets. Certain
statements containing the membership relation and relations

defined through it will be introduced as axioms. A statement is

true if and only if it can be deduced from the axioms (by means’

of a suitable system of logic, in particular certain rules of inference),
and the same applies to the existence of sets.

The situation is still simpler in the modification Z of Zermelo’s
system given in Nos. 2-6 below; here—as opposed to Zermelo’s
own system —no other objects than sets appear, hence the first
and the second arguments of the membership relation determine
the same domain. On the other hand, in the systems briefly
mentioned in No. 7 and extensively treated in the main part of

this monograph, the second argument‘s.of the membership relation .

may belong to a different domain, the domain of classes.

As to the elimination of contradictions, all that can be expected
is the exclusion of the logical and semantical antinomies known
at present; this is attained by the exclusion of “overcomprehensive”
sets in the system Z (cf. No. 7) and by the formulation of Axiom V
in No. 3. Sufficient hints at how the essential parts of classical set-
theory can be derived from the axioms of Nos. 2-5 are given in
No. 6. A few remarks only about the independence of axioms
oceur in this historical part; the question is discussed in a more
proionnd way in the main part of the prcsvnt monograph.

2. ZERMELO’S SYSTEM ). EQUALITY AND EXTENSIONALITY

The introduction to the main part of this monograph, written
by Bernays, begins with a reference to the historically first
axiomatization of set-theory, given by Zermelo in 1908. The chief

1)  The n;a.in source is Zermelo [1908a]; see also [1930]. Cf. the expos-
jtions in Fraenkel [1927] and [1928] (also Cavaillés [1938], Weyl [1946]),
Ackermann [1937], Church {1942] (pp. 180-181}).



6 HISTORICAL, INTRODUOTION

purpose of this part of the monograph is o give a historical iniroduction
through an exposition of Zermelo’s system, with some improvements
which were inserted into it before the fundamental changes
performed by von Neumann and Bernays from 1925 and 1937 on
(see No. 7).

Prior to a systematic exposition, we start with some informal
remsarks to motivate the method adopted afterwards.
 Within a certain non-empty domain cf objects we take, as the
only primitive relation of our axiomatic Bystem Z, the membership
relation & (see'above). If z and y denote any objects of the domain,
the statement z £ y shall either hold true or not. While those
parts of logic that are nécessary for Z, in particular the rules of
inference and quantification with respect to thing-variables, are
assumed to be pre-established, the relation of equality should be
treated explicitly. Here the following attitudes are possible ).

1) Equality in its logical meoning as identity. Zermelo adopts
this attitude by calling & and y equal ‘‘if they denote the same
thing (object)”. When the objects are sets he in addition rests on
an axiom of extensionality (see below) which states that a set is
determined by its elements.

Thus Zermelo’s axiom differs intrinsically from the Axiom of
Extensionality as expressed below (p. 8), which refers to ail objects
of the domain %),

2) Equality as a (second) primitive relation within Z. Then
the usual properties of any equivalence (equality) relation must
be guaranteed axiomatically, in particular substitutivity with
regard to e in the two-fold sense: of extensionality as above, and
of equal objects being elements of the same sets.

3) Equality as a mathematically defined relation. We may define
x=y either by “if every set-that contains # contains also y and
vice versa”, or by “if  and y contain the same elements”. The

1) Cf. Fraenkel [1927] and [1827a], A. Robinso(h)n [1839]. For & more
general attitude, cf, Ha.xlperm [1954]. See also the main part of the present
monograph.

%) The situation becomes sornewhat dlﬂ'erent, if, as done in Quine [1940],
every “individual” (p. 7) is regarded as & unit-set containing itself.
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second way is possible only if, as assumed in the following, every
object is a set (including the null-set). In the former case, exten-
sionality must be postulated axiomatically; in the la.tter, an axiom
has to guarantee the former property. '
~ In this part we adopt method 3), which seems superior to 2)

insofar as a single primitive relation only occurs in the system,
and to 1) since the system is constructed upon a weaker basic
discipline. It makes no essential difference which of the two
definitions of equeality is chosen, provided we take a suitable
decision about the existence of individuals (called Urelemente in
Zermelo [1980]), i.e. of objects which contain no element !).

Taking into account the admissibility of a set which has no
element (‘“‘null-set’), three positions about individuals are tenable:
that the domain contains one null-set and also other individuals,
individuals but no null-set, one null-set but no other individuals.
(A domain without null-set and individuals would be impractical.)
The first position was taken by Zermelo and, for instance, by
Ackermann [1937a]; the second by Quine from 1936 on; the
third, first proposed in Fraenkel [1021/22] and later accepted by
von Neumann, Bernays, and others, is adopted in the following.
This involves that all objects of Z are sets, hence that the values
of the first and of the second argument of the membership relation
constitute the same domain. In fact, for the purpose of developing
mathematios it has proved unnecessary to assume the existence
of individuals. However, as pointed out below in No. 4, there are
problems of independence for which the assumption that infinitely
many individuals can be admitted to the domain plays an im-
portant part; thus it appears that those problems are more
diffioult within the system Z than in Zermelo’s original system.

We now outline the system Z, which is not empty and whose only
primitive relation is the dyad.w relation ¢ of membership whose
arguments are sets.

1)  This use of “individual” has nothing to do with the distinction between
“individuals” and “‘classes’ in logic (cf., for instance, Tarski [1935], § 2, and
the main part of this monograph). In the logical sense the sets are individuala.
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Definition I. If s and { are sets such that, for all z, x¢s
implies x ¢ ¢, s is called a subset of ¢, in symbols s C ¢; in particular
a proper subset (s Ct) if there is a y et with y &s.

In contrast with Cantor’s “‘comprehensive” method of construe-
ting sets, this definition does not allow the construction of subsets
of t by “collecting” some of its elements. Only with regard to given
» gets may we state that one is a subset of the other.

It follows that the relation C is reflexive (s Cs) and transitive
(i.e., sCt and ¢t Cu imply s Cu); C is irreflexive, transitive, and
asymmetrical (i.e., sC¢ and ¢ Cs are incompatible).

In accordance with earlier remarks, equality is defined in either
of the following ways.

. Definition 1Ia. If, for all z, s ¢ x implies ¢ £ x and conversely,
s equals ¢ (s=¢); the negation is s#*¢ (s differs from ¢j. That is to
say, sets are equal if contained in the same objects (sets). '

Definition IIb. If sCt and ¢tCs, then s=t; otherwise
s+#t. That is to say, sets containing the same objects are equal.

Equality is a reflexive, symmetrical, and transitive relation.
The definitions are somehow peguliar to Z; in fact, in the systems
of No. 7 (below) not every object can become an element of another
object, as against IIa, while in Zermelo’s own system there may
exist different objects without elements, as against IIh.

Equality is substitutive with regard to the second a.rgument
of ¢, i.e. from z ¢ s and s=¢ it follows that « et1). But ITa does
not yield extensionality nor dees IIb yield substitutivity regarding
the first argument; hence we supplement ITa and IIb respectively
with the axioms '

Axiom Ya. sCt and t Ce imply s=¢. S
Aziom Ib. zes and z=y imply y =s.
It makes no difference whether we adopt Definition Ila and
Axiom Ia, or ITb and Ib. Hence we shall simply speak of the
Definition (I1) of Equality and of the Aaiom (I) of Extensionality.

}) This is evident in view of IIb; for the proof in view of ITa, ecf.
A. Robinso(h)n [1939], footnote 4.
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' Since a set is determined !) by its elements, we denote the set
with the elements.a, b, ¢, ... also by {a, b, ¢, ...}, regardless of the
order of the elements.

Definition III. Two sets without common elements are
called mutually exclusive. If s contains at least two elements, and
any two elements of s are mutually exclusive, s is called a disjointed
set.

3. “CONSTRUCTIVE” AXIOMS OF “GENERAL’ SET THEORY

In the heading two ad hoc terms are used. “Constructive” weans
that, certain things (one set, two sets, a set and a predicate) being
given, the axiom states the existence of a wuniquely determined
other set; “general’” theory means—in contrast with the use in
the main part of the monograph; cf. Bernays [1942a], p. 133—
that no axioms of infinity (see No. 5) are included. (According
to the present attitude the Axiom of Power-Set, for mstd.nne, is

not an axiom of infinity.)

The axioms will be preceded by informal remarks which point .
out the immediate purpose of every single axiom and, thereby,
hint at their independence.

The opera.txon of “uniting” two different; sets 1) is mtroduoed
by

- Axiom XX of Paermg 3). For any two dlﬁ”erent sets o and b
the pair {a, b}, or {b, a}, exists. '

On account of extensionality we are entitled to use the definite -
article (the pair) here and in the following three axioms, as well
- a8 in Theorems 1-3 below.

1) Hence Zermelo’s name for Axiom Ia: Axziom der Bestimmithest. Yet
he explicitly restricts the axiom to the case thet ¢ and ¢ contein elements,
a restriction not adopted in our system Z.

t) Instead of this Zermelian operation, Kuratowski [1925] uses the
union of two sets in the sense of Axiom III. — For the case a ~ b, see
theorem 1 on p. 14.

%) In Zermelo’s terminology, Axiom der Elementarmengen. This includes
postulating the null-set and the set containing a single given element;
both will be proved to exist in the present exposition.
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Given any number of sets, Axioms I and II do not enable us to
produce new sets other than pairs. The primary operations of
Boolean algebra, union and intersection, suggest themselves as
simplest additional procedures, and the former will prove sufficient. -
We introduce it by .

Axiom T of Sum-Set (Union). For any set s which contains
at least two elements, there exists the set whose elements
are the elements of the elements of s.

This set ie called the sum-set of s, or the union of the elements

- of &, and is denoted by \Js. If s={a, b} we also write a UD for
s, and if s contains the elements a, b, c, ... we write aU bU cU ...
for | Js.

The union of two different sets exists by II and I Given a
number of sets, certain types of new sets can be produced, i..
‘proved to exist, and the associativity of the union-operation is
easily shown. Nevertheless, clearly these axioms do not enable us
to proceed to more-than—denumemble sets if, say, & sequence of
denumerable sets is given, where ‘“‘denumerable” and “sequence’”
"are informal terms to be formally defined later.

Cantor’s (second) tool for reaching higher powers was the
operation of (transfinite) multiplication, in particular exponentia-
tion. We can, however, content ourselves with the special tool of
the power-set, i.e.

Aziom IV of Fower-Set. For any set s, there exists the set
whose elements are all subsets of s.

This set is called the power-set of s and dencted by II(s)?).
The efficacy of this axiom differs from that of Cantor’s respective
operation not only in that the existence of s is presupposed, but
in that the existence of the subsets of s is here assumed to be
previously established. Since Axioms I-II yield only few very
special subsets of a given set and since Deﬁnition I" does not
1y Zermelo writes ©# for Us (Axiom Iil), and Us for H(e) Thus also,

for instance, in Kleene [1952]. In the main part of this monograph Js& -
is used for Us.
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enable us to produce any subsets!), Axiom IV is at the present
juncture a very limited instrument and not at all sufficient to
yield the so-called, “theorem of Cantor” about the cardinality of
the power-set. For instance, the existence of infinite proper subsets
of an infinite set & cannot be ensured so far. Hence methods of
producing subsets of a given set remain the chief desideratum —and,
as we. shall see a posteriori, the only one left within general set
theory. The principal method in Z (for an additional direction see
No. 4) is given by ’

Aziom V of Subsets ?). For any set s and any predicate P 3)'
which is meaningful (‘“definite’’) for all elements of s, there
exists the set y that contains just those elements # of ¢ which
satisfy the predicate ® (the condition P(z)).

y is clearly a subset of s.

The weak point in thls formulation of the axiom is the term

“meaningful predicate’’ (or property); in Zermelo’s terminology,
definite Eigenschaft.

Informally this term may be understoed to mean that, for each
z & 8, P(x) should be either true or false, without demanding that
the decision ought to be reached at the present stage of scientific
development. Thus “z is transcendental” is meaningful when s
is a set of numbers, but not “x is finitely definable” or another
semantic condition, &s those appearing in the antinomies of the
semantical type.

‘Clearly, such explanations cannot satisfy the requirements of
a formal deductive theory. Zermelo [1908a] (p. 263) gave the
following parsphrase: Eine Frage oder Aussage &, uber deren
Gultigkeit oder Ungiltigkeit die Grundbezichungen des Bereiches %)

1) This is also the case in Zermelo’s exposition, but has been mxsunder-
stood by some of his interpreters.

1) Zermelo calls it Axiom der Aussonderung (of “sifting”).

3) P(z) is what is called by Rosser [1953] (e.g., p. 200) a oondition on x;
other expresgions are “‘s statement with free occurrence of ™ or “a well-
formed forrula’.

4) . The intention is to the membership relation, and presuma.bly also to
the equality relation.
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vermége der Axiome und der allyemeingiltigen logischen (esetze ohne
Willkar entscheiden, heisst ‘definit” . Ebensc wird auch eine “Klassen-

aussage”’ &(x), in welcher der variable Term x alle Individuen einer

Klasse ® durchlaufen kann, als “definit” bezeichnret, wenn sie [tir

jedes einzelne Individuum x der Klasse § definit ist. So ist die Frage,

ob a &b oder nicht ist, tmmer definit, ebenso die Fraqe ob MCN:
oder nichi.

13 years then elapsed mml the first steps were taken to replace
this hardly satisiactory explzmatlon by a morerigoroug onre. Fraenkel
[192}/22] and Skolem [1922/23] indeperndently took two seemmgly
different directions which, however, proved {o be essentially
equivalent '), and of which ths second is plcfsx able for its more
general and natural character. '

The firet method formalizes ““definiteness’ by means of a sp«,cla.l
concept of function defined by the operations of Axioms II-V; the
inclusion of V itself leads to a certain hierarchy of orders, in accor-
dance with the fact that the axiom constitutes an axiom schema.
The ectual derivation of classical (general) set-theory, conprising
the theories of order and well-order, shows that this apparently
"special concept of function is sufficient ®). ’

'~ The second method ?) formalizes ‘‘definiteness” by using the
concept of (elementary) formula, ie. of “statement” in the sense
of Rosser [1953] (p. 208), obtained from variables and the member-
ship relation by negation, conjunction, d1s;unct:on and quanti-
fication with respeet to thing- -variables; within the first-order
predicate calculus with its truth-functions. As proven by Skolem,
this procedure covers the first method; it, too, nhows the axiom
to represent an axiom schema which "contains infinitely many
pmtr-.ular a.moms

1y Cf, in perticular, Skolam {19201 For the first method, cf. Fraenlel
© 119223 and (1827] and von Neumenn [1928a].

%) See below No. 6. For existence theorems as those connected with
ordinal numbors, the Axiom of Suhstitution (Ko. 5), with the generalized
funetion cencept of von Neurnson [38:8al, is roquired. Cf. slso Curry
[1934], p. 590, and [1836% p. 873,

3y Of. 8kolein 10201 (§2) and [1980]; thece Schroder’s digebra der
Logik is used, but thiz i not an esseutial feature.




