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Preface

This text is an introduction to programming in general, and a manual for programming with
the language Modula-2 in particular. It is oriented primarily towards people who have
already acquired some basic knowledge of programming and would like to deepen their
understanding in a more structured way. Nevertheless, an introductory chapter is included
for the benefit of the beginner, displaying in a concise form some of the fundamental
concepts of computers and their programming. The text is therefore also suitable as a
self-contained tutorial. The notation used is Modula-2, which lends itself well for a
structured approach and leads the student to a working style that has generally become
known under the title of structured programming.

As a manual for programming in Modula-2, the text covers practically all facilities of that
language. Part 1 covers the basic notions of the variable, expression, assignment,
conditional and repetitive statement, and array data structure. Together with Part 2 which
introduces the important concept of the procedure or subroutine, it contains essentially the
material commonly discussed in introductory programming courses. Part 3 concerns data
types and structures and constitutes the essence of an advanced course on programming.
Part 4 introduces the notion of the module, a concept that is fundamental to the design of
larger programmed systems and to programming as team work. The most commonly used
utility programs for input and output are presented as-examples of modules. And finally,
Part 5 covers facilities for system programming, device handling, and multiprogramming.
Practical hints on how and when to use particular facilities are included and are intended as
guidelines for acquiring a sound style of programming and system structuring.

The language Modula-2 is a descendant of its direct ancestors Pascal {1] and Modula [2].
Whereas Pascal had been designed as a general purpose language and after implementation
in 1970 has gained wide usage, Modula had emerged from experiments in
multiprogramming and therefofe concentrated on relevant aspects pertinent to that field of
application. It had been defined and implemented experimentally by 1975.

In 1977, a research project with the goal to design a computer system (hardware and
software) in an integrated approach, was launched at the Institut fir Informatik of ETH
Ziirich. This system (later to be called Lilith) was to be programmed in a single high-level
language, which therefore had to satisfy requirements of high-level system d&sngn as well as
those of low-level programming of parts that closely interact with the given hardware.

Modula-2 emerged from careful design deliberations as.a language that includes all aspects
of Pascal and extends them = with “the xmponant module concept and thoge: of‘
multiprogramming. Since its syntax was more in lme’vmh that of Modula than with Pascal’s,
the chosen name was Modula-2. We shall mbsequently use Modula as synonym: fbr
Modula-2,

The language s main additions with regard to Pascal are‘ -

1. The module concept, and in particular the, faclhty to split a module into a dgﬁmtwn part
and an implementation part. ’



2. A more systematic syntax which facilitates the learning process. In particular, every
structure starting with a keyword also ends with a keyword, i.e. is properly bracketed.

3. The concept of the process as the key to multiprogramming facilities.

4. So-called low-level facilities which make it possible to breach the rigid type consistency
rules and allow to map data with Modula-2 structure onto a store without inherent
structure.

5. The procedure type which allows procedures to be dynamically assigned to variables.

A first implementation of Modula-2 became operational on the PDP-11 computer in 1979,
and the language’s definition was published as a Technical Report in March 1980. Since
then the language has been in daily use in our institute. After a year’s use and testing in
applications, the compiler was released for outside users in March 1981. Interest in this
compiler has grown rapidly, because it incorporates a powerful system design tool
implemented on widely installed minicomputers. This interest had given rise to the need for
this manual and tutorial. The defining report is included at the end of the manual, primarily
for reference purposes. It has been left unchanged, with the exception that the chapters on
standard utility modules and on the use of the compiler have been omitted. °

This text has been produced in camera-ready form by a Lilith minicomputer connected to a
Canon LBP-10 laser printer. Concurrently with the writing of the book, the author designed
the programs necessary for automatic text formatting (and controlling the printer) and
designed the interface connecting the printer. Naturally, all these programs have been
written in Modula (for Lilith).

It is impossible to properly acknowledge all the influences that contributed to the writing of
this text or the design of Modula. However, I am particularly grateful for the inspiring
influence of a sabbatical year (1976) at the research laboratory of Xerox Corporation
(PARC), and for the ideas concerning modules presented by the language Mesa [3]. Perhaps
the most important insight gained was the feasibility of implementing a high-level language
effectively on minicomputers. My thanks are also due to the implementors of Modula,
notably L. Geissmann, A. Gorrengourt, Ch. Jacobi and S.E. Knudsen, who not only have
turned Modula into an effective, reliable tool, but have often wisely consulted against the
inclusion of further fancy facilities.

Ziirich, February 1982 N.W.
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1. Introduction

Although this manual assumes that its reader is already familiar with the basic notions of
computer and programming, it may be appropriate to start out with the explanation of some
concepts and their terminology. We recognize that - with rare exceptions - programs are
written - more appropriately: designed - with the purpose of being interpreted by a
computer. The computer then performs a process, i.e. a sequence of acticns, according to
the specifications given by that program. The process is also called a computation.

The program itself is a text. Since it specifies a usually fairly complex process, and must do
so with utmost precision and care for all details, the meaning of this text must be specified
very precisely. Such precision requires an exact formalism. This formalism has become
known as a language. We adopt this name, although a language is normally spoken and
much less precisely defined. Our purpose here is to learn the formalism or language called
Modula-2 (henceforth simply called Modula).

A program usually specifies a process that causes its interpreter, i.e. the computer, to read
data (the so-called input ) from some sources and to vary its subsequent actions according to
the accepted data. This implies that a program does not only specify a (single) process, but
an entire - usually unbounded - class of computations. We have to ensure that these
processes act according to the given specifications (or should we say expectations) in all
cases of this'class. Whereas we could verify that this specification is met in the case of a
single computation, this is impossible in the general case, because the class of all permitted
processes is much too large. The conscientious programmer ensures the correctness of his
program by careful design and analysis. Careful design is the essence of professional
programming,.

The task of designing a program is further complicated by the fact that the program not
only must describe an entire class of computations, but often should also be interpreted
(executed) by different interpreters (computers). At earlier times, this required the manual
transcription of the program from its source form into different computer codes, taking into
account their various characteristics and limitations. The difficulties have been drastically
reduced, albeit not eliminated, by the creation of high level languages with formal
definitions and the construction of automatic translators convertmg the program into the
codes of the various computers.

In principle, the formal language should be defined in an abstract, perhaps axiomatic
fashion without reference to an actual computer or interpretation mechanism. If this were
achieved, the programmer would have to understand the formal language only. However,
such generality is costly and often restrictive, and in many cases the programmer should still
know the principal characteristics of his computer(s). Nevertheless, the qualified
programmer will make as little reference to specific computer characteristics as possible and
rely exclusively on the rules of the formal language in order to keep his program general
and portable. The language Modula assists in this task by confining compuner dependencies
to specific objects, used in so-called low-level programming only. .

From the foregoing it follows that a translation process lies between‘the program’s



formulation and its interpretation. This process is called & compilation, because it condenses
the program’s source text into a cryptic computer code. The quality of this compilation may
be crucial to the efficiency of the program’s ultimate interpretation. We stress the fact that
there may be many compilers for a given language (even for the same computer). Some
may be more efficient than others. We recognize that efficiency is a characteristic of
implementations rather than the language. It therefore is important to distinguish between
the concepts of language and implementation.

We summarize:
A program is a piece of text.
The program specifies computations or processes.
A process is performed by an interpreter, usually a computer, interpreting (executing) the
program.
The meaning of the program is specified by a formalism called programming language.
A program specifies a class of computations, the input data acting as parameter of each
individual process. .
Prior to its execution, a program text is translated into computer code by a compiler. This
process is called a compilation.

Program design includes ensuring that all members of this class of computations act
according to specification. This is done by careful analytic verification and by selective
empirical testing of characteristic cases.

Programs should refrain from making reference to characteristics of specific interpreters
(computers) whenever possible. Only the lack of such reference ensures that their meaning
can be derived from rules of the language.

A compiler is a program translating programs from their source form to specific computer
codes. Programs need to be compiled before they are executed. Programming in the wider
sense not only includes the formulation of the program, but also the concrete preparation of
the text, its compilation, correction of errors, so-called debugging, and the planning of tests.
The modern programmer uses many tools for these tasks, including text editors, compilers,
and debuggers. He also has to be familiar with the environment of these components. We
shall not describe these aspects, but concentrate on the language Modula.



2. A first example

Let us follow the steps of development of a simple program and thereby explain some of the
fundamental concepts of programming and of the basic facilities of Modula. The task shall
be, given two natural numbers x and y, to ccmpute their greatest common divisor (gcd).

The mathematical knowledge needed for this problem is the following:
1.if x equals y, x (or y) is the desired result

2. the ged of two numbers remains unchanged, if we replace the larger number by the
difference of the numbers, i.e. subtract the smaller number form the larger one.

Expressed in mathematical terms, these rules take the form
1. ged(x,x) =x
2. ifx>y,ged(x,y) = ged(x-y,y)

The basic recipe, the so-called algorithm, is then the following: Change the numbers x and y
according to rule 2 such that their difference decreases. Repeat this until they are equal.
Rule 2 guarantees that the changes are such that gcd(x,y) always remains the same, and rule
1 guarantees that we finally find the result. ‘

Now we must put these recommendations intc terms of Moduia. A first attempt leads to the
following sketch. Note that the symbol # means "unequal”.

WHILE x # yDO
"apply rule 2, reducing the difference"
END

The sentence within quotes is plain English. The second version refines the first version by
replacing the English by formal terms:

WHILE x # yDO
IFx >y THEN
Xi= Xy
ELSE
yi=y-X
END
END

This piece of text is not yet a complete program, but it shows already the essential
characteristic of a structured programming language. Version 1 is a statement, and this
statement contains another, subordinate statement (within quotes). In version 2 this is
elaborated, and yet further subordinate statements emerge (expressing the replacement of a
value x by another value x-y). This hierarchy of statements expresses the underlying
structure of the algorithm. It becomes explicit due to the structure of the language, allowing
the nesting of components of a program. It is therefore important to know the language’s
structure (syntax) in full detail. Textunally we express nesting or subordination by



appropriate indentation. Although this is not required by the rules of the language, it helps
in the understanding of a text very considerably.

Reflecting an algorithm’s inherent structure by the textual siructure of the program is a key
idea of structured programming. It is virtually impossible to recognise the meaning of a
program when its structure is removed, such as done by a compiler when producing
computer code. And we should keep in mind that a program is worthless, unless it exists in
some form in which a human can understand it and gain confidence in its design.

We now proceed towards the goal of producing a complete program from the above
fragment. We realize that we need to specify an action that assigns initial values to the
variables x and y, as well as an action that makes the result visible. For this purpose we
should actually know about a computer’s facilities to communicate with its user. Since we
do not wish to refer to a specific machinery, and particularly not in such a frequent and
important case as the generation of output, we introduce abstractions of such communication
facilites, postulating that they will be available - and realized in some appropriate fashion -
on all computers where Modula programming is said to be possible. These abstractions take
the form of standard statements, as shown below. The input of data is called a Read
operation, their output as a Write operation. We may, for example, assume that data are
read from a keyboard and written on a display.

ReadCard(x);

ReadCard(y);

WHILE x # yDO
IFx>yTHEN x : = x-y

ELSEy:= y-x

END

END;

WriteCard(x,6)

The procedure ReadCard reads a cardinal (a whole, non-negative number) and assigns it to
its parameter (x). The procedure WriteCard outputs a cardinal as specified by its first
parameter (x). The second parameter (6) indicates the number of digits available for the
representation of this value on the output medium.

In the next and final version we complete our text such that it becomes a genuine Modula
program.

MODULE gcd;
FROM InOut IMPORT ReadCard, WriteString, WriteL.n, WriteCard;

VAR x,y: CARDINAL;
BEGIN
WriteString("x = "); ReadCard(x); WriteLn;'
WriteString("y = "); ReadCard(y); WriteLn;
WHILE x # yDO
IFx>YTHENX:= x-y
ELSEy:= y-x
END
END;
WriteString("gcd = "); WriteCard(x,6); WriteLn;
END gcd.



The essential additions in this step are so-called declarations In Modula, all names of
objects occuring in a program, such as variables and constants, have to be declared. A
declaration introduces the object’s identifier (name), specifies the kind of the object
(whether it is a variable, a constant, or something else) and indicates general, invariant
properties, such as the type of a variable or the value of a constant.

The entire program is called a module, given a name (gcd), and has the following format:

MODULE name;
<import lists>
{declarations>

BEGIN
<{statements>

END name.

A few more comments concerning gur example are in order. The procedures WriteLn,
WriteString, ReadCard, and WriteCard are not part of the language Modula itself. They are
defined in another module called /nQut which is presumed to be available. A collection of
such useful modules will be listed and explained in later parts of this text. Here we merely
point out that they need to be imported in order to be known in a program. This is done by
including the names of the needed objects in an import list and by specifying from which
module they are requested.

The procedure WriteString outputs a string, i.e. a sequence of characters (enclosed in quotes).
This output makes the computer user aware that an input is subsequently requested, an
essential feature of conversational systems. The procedure WriteLn terminates a line in the
output text.

And this concludes the discussion of our first example. It has been kept quite informal. This
is admissible because the goal was to explain an existing program. However, programming
is designing, creating new programs. For this purpose, only a precise, formal description of
our tool is adequate. In the next chapter, we introduce a formalism for the precise
description of correct, "legal” program texts. This formalism makes it possible to determine
in a rigorous manner whether a written text meets the language's rules.
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3. A notation to describe the syntax of Modula

A formal language is an infinite set of sequences of symbols The members of this set are
called sentences, and in the case of a programming language these sentences are programs.
The symbols are taken from a finite set called the vocabulary. Since the set of programs is
infinite, it cannot be enumerated, but is instead defined by rules for their composition.
Sequences of symbols that are composed according to these rules are said to be syntactically
correct programs; the set of rules is the syntax of the language.

Programs in a formal language then correspond to grammatically correct sentences of
spoken languages. Every sentence has a structure and consists of distinct parts, such as
subject, object, and predicate. Similarly, a program consists of parts, called syntactic
entities, such as statements, expressions, or declarations. If a construct A consists of B
followed by C, i.e. the concatenation BC, then we call B and C syntactic factors and describe
A by the syntactic formula

A = BC.

If, on the other hand, an A consists of a B or, alternatively, of a C, we call B and C syntactic
terms and express A as

A = BJC.

Parentheses may be used to group terms and factors. It is noteworthy that here A, B, and C
denote syntactic entities of the formal language to be described, whereas the symbols =, |,
parentheses, and the period are symbols of the meta-notation describing syntax. The latter
are called meta-symbols, and the meta-notation introduced here is called Extended Backus
Naur-Formalism (FBNF).

In addition to concatenation and choice, EBNF also allows to express option and repetition.
If a construct A may be either a B or nothing (empty), this is expressed as

A = [B].

and if an A consists of the concatenation of any number of Bs (including none), this is
denoted by .

A = {B).

This is all there is to EBNF! A few examples show how sets of sentences are defined by
EBNF formulas:

(AIB)(CID) ACADBCBD

A[B]C ABCAC

A{BA} A ABA ABABA ABABABA ...
{A|B}C CACBC AAC ABC BBCBAC...

Evidently, EBNF is itself a formal language. If it suits its purpose, it must at least be able to
describe itself! In the following definition of EBNF in EBNF, we use the following names
for entities:
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statement: a syntactic equation
expression: a list of alternative terms

term: a concatenation of factors

‘factor: a single syntactic entity or a parenthesized expression
The formal definition of EBNF is now given as follows:

syntax = {statement}.

statement = identifier " =" expression ".".

expression = term {"|" term}.

term = factor {factor}.

factor = identifier | string | "(" expression ")" |

"[" expression "]" | "{" expression "}".

Identifiers denote syntactic entities; strings are sequences of symbols taken from the
defined language’s vocabulary. For the denotation of identifiers we adopt the widely used
conventions for programming languages, namely:

An identifier consists of a sequence of letters and digits, where the first character must be a letter. A
string constists of any sequence of characters enclosed by quote marks (or apostrophes).

A formal statement of these rules in terms of EBNF is given in the subsequent chapter.



4. Representation of Modula programs

»

The preceding chapter has introduced a formalism, by which the structures of well-formed
programs will subsequently be defined. It defines, however, merely the way in which
programs are composed as sequences of symbols, in contrast to sequences of characters. This
"shortcoming" is quite intentional: the representation of symbols (and thereby programs) in
terms of characters is considered too much dependent on individual implementations for
the general level of abstraction appropriate for a language definition. The creation of an
intermediate level of representation by symbol sequences provides a useful decoupling
between language and ultimate program representation. The latter depends on the
available character set. As a consequence, we need to postulate a set of rules governing the
representation of symbols as character sequences. The symbols of the Modula vocabulary
are divided into the following classes:

identifiers, numbers, strings, operators and delimiters, and comments.

The rules governing their representation in terms of the standard ISO character set are the
following:

1. Identifiers are sequences of letters and digits. The first character must be a letter.
$ identifier = letter {letter|digit}.
Examples of well-formed identifiers are
Alice likely jump BlackBird SR71
Examples of words which are no identifiers are

sound proof (blank space is not allowed)
sound-proof {neither is a hyphen)

2N (first character must be a letter)
Miller's (no apostrophe allowed)

Capital and lower-case letters are considered as distinct.

Sometimes an identifier has to be qualified by another identifier; this is expressed by
prefixing i with j and a period (j.i); the combined identifier is called a qualified identifier
(abbreviated as qualident ). Its syntax is

$ qualident = {identifier "."} identifier.

2. Numbers are either integers or real numbers. The former are denoted by sequences of
digits. Numbers must not include any spaces. Real numbers contain a decimal point and a
fractional part. In addition, a scale factor may be appended. It is specified by the letter B
and an integer which is possibly preceded by a sign. The E is pronounced as "times 10 to
the power of™. /

Examples of well-formed numbers are
1981 1 325 5.1E3 4.0E-10



13

Examples of character sequences that are not recognized as numbers are

15 no comma may appear
1'000°000 neither may apostrophs
3.5En no letters allowed (except the E)

The exact rules for forming numbers are given by the following syntax:

$ number = integer | real.

$ integer = digit {digit}.

$ real = digit {digit} "." {digit} [ScaleFactor].

$ ScaleFactor = "E" [" + "|"-"] digit {digit}.

Note: Integers are taken as octal numbers, if followed by the letter B, or as hexadecimal numbers if
followed by the letter H.

3. Strings are sequences of any characters enclosed in quote marks. In order that the closing
quote is recognized unambiguously, the string itself evidently cannot contain a quote mark.
To allow strings with quote marks, a string may be enclosed within apostrophes instead of
quote marks. In this case, however, the string must not contain apostrophes.

$ string = ' {character} """ | ™" {character} "'".
Examples of strings are

"no comment"
"Buck’s Corner"
'he said "do not fret”, and fired a shot'’

4. Operators and delimiters are either special characters or reserved words. These latter are
written in capital letters and must not be used as identifiers. Hence is it advantageous to
memorize this short list of words.

The operators and delimiters composed of special characters are

+ addition, set union
subtraction, set difference
multiplication, set intersection
division, symmetric set difference
assignment

logical AND

equal

unequal

lass than

greater than

less than or equal

greater than or equal
parentheses

index brackets

set braces

comment brackets
dereferencing operator

..+« |  punctuation symbois

UGN

BmAmmAS VAV A
» A
S v

The reserved words are enumerated in the following list; their meaning will be explained
throughout the subsequent chapters:
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AND ELSIF LOOP REPEAT
ARRAY END MOD RETURN
BEGIN EXIT MODULE SET

' BY EXPORT NOT THEN
CASE FOR OF TO
CONST FROM OR TYPE
DEFINITION IF POINTER UNTIL
DIV IMPLEMENTATION PROCEDURE - VAR
DO IMPORT QUALIFIED WHILE
ELSE IN RECORD WITH

It is customary to separate consecutive symbols by a space , i.e. one or several blanks.
However, this is mandatory only in those vases where the lack of such a space would merge
the two symbols into one. For example, in "IF x = y THEN" spaces are necessary in front
of x and after y, but could be omitted around the equal sign.

5. Comments may be inserted between any two symbols. They are arbitrary sequences of
characters enclosed in the comment brackets (» and *). Comments are skipped by compilers
and serve as additional information to the human reader. They may also serve to signal
instructions (options) to the compiler.



