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. PREFACE

Since the first edition of this book was published in 1965, many‘chahges have
taken place in process control. Nearly all undergraduate students in chemical

" "engineering are now required to take. a course in process dynamics and control.

The purpose of this book is to take the student from the basic mathematics to a
variety of design applications -in a clear, concise manner.

The most significant change since the first edmon is the use of the dlgltal
computer in complex problem-solving and in process control instrumentation.
However, the fundamentals of process control, which remain the same, must be
acquired before one can appreciate the advanced toplcs of control. .

In its present form, this book represents a major revision of the first edition.
The material for this book evolved. from courses taught at Purdue University and
Drexel University. The first 17 chapters on fundamentals are quite close to the
first 20 chapters of the first edition. The remaining I8 chapters contain many
new topics, which were considered very advanced when the first edition was

published. .
: A knowledge of calculus, unit operatiqns-, and complex numbers is presumed
on the part of the student. In certain later chapters, more advanced mathematical
preparatnon is useful. Some examples would include partial differential equations
in Chap. 21, linear algebra in Chaps. 28-30, and Fourier series in Chap. 33.

Analog computation and pneumanc controllers in the first edition have been
replaced by digital computation and micrdprocessor-based controllers in Chaps.
34 and 35. The student should be assigned material from these chapters at the
appropriate time in the development of the fundamentals. For example, obtaining
the transient response for a system containing a transport lag can be obtained casily
only with the use of computer simulation of transport lag. Some of the software
now available for solving control problems should be available td the student;
such software is described im Chap. 34. To understand the operation of modern
microprocessor-based controllers, the student should have hands-on experience
with these instruments in a laboratory.

Xv




XVI  PREFACE

Chapter ! is intended to meet one of the problems consistently faced in pre-
senting this material to chemical engincering studeats. that is, one of perspective.
The methods of analysis used in the control area are se different from the previpus
experiences of students that the material comes to be regarded as a sequehce’,bf
special mathematical techniques, rather than an integrated design approach to a
class of real and practically significant industrial problems. Therefore, this chap-
ter presents an overall, albeit superficial, iook at a simple control-system desxgn
problem. The body of the text cavers the following topncs

1. Laplace transforms, Chaps 2 to 4.

2. Transfer functions and responses of open-loop systems, Chaps. S to 8.
3. Basic techniques of closed-loop wmfol Chaps 9to 13.

4. Stability, Chap. 14. :

5. Root-locus methods, Chap. 15.

6. Frequency-response methods and design, Chaps. 16 and 17.

7

. Advanced control strategies (cascade, feedforward, Smlth predictor, internal
model control), Chap. 18.

8. Controller tuning and process identification, Chap. 19.
9. Control valves, Chap. 20.
10. Advanced process dynamics, Chap. 21.
11. Sampled -data control, Chaps. 22 to 27. | :
12. State-space methods and multivariable control, Chaps. 28 to 30.
13. Nonlinear control, Chaps. 31 to 33.
14, Digital computer simulation, Chap. 34.
1S. Microprocessor-based controliers, Chap. 35.

It has been my experience that the book covers sufficient material for a one-
semester (15-week) undergraduate course and an elective undergraduate course or

_ part of a graduate course. In a lecture course meeting three hours per week during

a 10-week term, 1 have covered the followmg Chapters T 10 12 to 14, 16,
17, 20, 34, and 35.

After the first 14 chapters, the instructor may select the rémaining chapters
to fit a course of partlcular durstion and scope. The chapters on the more advanced
topics are written in a logical order; howéver, some can be sklppcd w1mout creating
a gap in understanding. :

I gratefully acknowledge the support and encouragemient of the Drexel Uni-
versity Departiment of Chemical E.ngmeenng for fostering the oniunon of this
text in its curriculum and for providing clerical staff and supphc:s for several edi-
tions of class notes. T want to acknowledge Dr. Lowell B. !&oppd $ important
contribution as co-author of the first edition of this book. 1 also want to thank
my colieague, Dr. Rajakannu Mutharasan, for his most helpful discussions and
suggestions and for his sharing of some of the new problem% For her assistance
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in typing. T want to thank Dorothy Porter. Helpful suggestions were also provided
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Hayden. ] also want to thank my wife Effie for helping me check the page proofs .
by reading to me the manuscript, the subject matter of which is far removed from
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McGraw-Hill and I would like to thank Ali Cinar, Hlinois Institute of Tech-
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CHAPTER

1

AN INTRODUCTORY
EXAMPLE

In this chapter we consider an illustrative example of a control system. The goal
is to introduce some of the basic pringiples and problems involved in process
.control and to give the reader an early look at an overall problem typical of those
we shall face in later chapters.

The System

A liquid stream at temperature 7; is available at a constant flow rate of w in units
of mass per time. It is desired to heat this stream to a higher temperature Tg. The
proposed heating system is shown in Fig. 1.1. The fluid flows into a well-agitated
tank equipped with a heating device. It is assumed that the agitation is sufficient
to ensure that all fluid in the tank will be at the same temperature, T. Heated fluid
is removed from the bottom of the tank at the flow rate w as the product of this
heaung process. Under these conditions, the mass of fluid retained in the tank
remains constant in time, and the temperature of the effluent fluid is the same as
that of the fluid in the tank. For a satisfactory design this temperature must be
Tr. The specnﬁc heat of the fluid C is assumed to be constant, mdepcndem of
temperature. -

Steady-State Design

A process is said to be at steady state when none of the variables are changing with
time. At the desired steady state, an energy balance around the heating process
may be written as follows:

qs = wC(T; - T;,) < (1.1

1
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Agitator

w.ﬂ}—ﬁ )

| FIGURE 1-1
Heater Agitated heating tank.

where g is the heat input to the tank and the subscript s is added to indicate a
steady-state design value. Thus, for example, 7, is the normally anticipated inlect
temperature to the tank. For a satisfactory design, the steady-state temperature of
the effluent stream 7', must equal Tg. Hence

qgs = wC(Tr —T;)) (1.2)

However, it is clear from the physical situation that, if the heater is set to deliver
only the constant input g, then if process conditions change, the tank temperature
will also’change from Ty. A typical process condition that may change is the inlet
temperature, 7;. »

An obvious solution to the problem is to design the heater so that its energy
input may be varied as required to maintain T at or near Tk.

Process Control

It is necessary to decide how much the heat input g is to be changed from ¢,
to correct any deviations of T from Tk. One solution would be to hire a process
operator, who would be responsible for controlling the heating process. The op-
erator would observe the temperature in the tank, presumably with a measuring
instrument such as a thermocouple or thermometer, and compare this temperature
with Tx. If 7 were less than Tk, he would increase the heat input and vice versa.
As he became experienced at this task, he would learn just how much to change
¢ for each situation. However, this relatively simple task can be easily and less
expensively performed by a machine. The use of machines for this and similar
purposes is known as automatic process control. -

The Unsteady State

If a machine is to be used to control the process, it is necessary to decide in
advance precisely what changes are to be made in the heat input g for every
possible situation that might occur. We cannot rely on the judgment of the machine
as we could on that of the operator. Machines do not think; they simply perform
a predetermined task in a predetermined manner.

To be able to make these control decisions in advance, we must know how the
tank temperature T changes in response to changes in 7; and ¢. This necessitates
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writing the unsteady-staie, ov transient, energy balance for the process. The input

and- output terms in this balance arc the same as those used in the steady-state

balance, Eq. (1.1). In addition, there is a trans,enf accumulation of energy in tnf'
tank, which may be written

dT - o e
Accumulation = pVC o energy units/time
where p = fluid density

V = volume of fluid in the tank
t = independent variable, tim

By the assumption of constant and equal inlet and outlet flow rates, the term pV,
which is the mass of fluid in the tank,-is constant. Since

Accumulation = input — output

we have
ar .
pVC-d—t = WC(T;‘_"T)'FLI . (13)

Eq.uation (1.1) is the steady-state solution of Eq. (1.3), obtained by setting the
derivative to zero. We shall make use of Eq. (1.3) presently.

Feedback Control

As discussed above, the controller is to do the same job that the human operator
was to do, except that the controller is told in advance exuctly how to do it.
This means that the controller will use the existing values of T and Ty to adjust
the heat input according to a predetermined formula.  Let the difference between
these temperatures, Tg — T, be called error. Clearly, the larger this error, the less
we are satisfied with the present state of affairs and vice versa. In fact, we are
completely satisfied only when the error is exactly zero.

Based on these considerations, it is natural to suggest that the controller
should change the heat input by an amount proportional to the error. Thus, a
plausnble formula for the controller to follow is

qt) = wCTr—T;, )+ K(Tg — T) : (1.4)

where K. is a (positive) constant of proportionality. This is called proportional
control. In effect, the controller is instructed to maintain the heat input at the

*A rigorous application of the first law of thermodynamics would yield a term representing the
transient change of internal energy with temperature at constant pressure. Use of the specific heat,
at either constant pressure or constant volume, is an adequate engineering approximation for most
liquids and will be applicd extensively in this text.
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steady-state design value g, as long as T is equal to T¢ {compare Eq. (1.2)}, i.e.,
as long as the error is zero. If 7 deviates from T, causing an error, the controiier
is to use the magnitude of the error to change the heat input proportionally.
(Readers should satisfy themselves that this change is in the right direction.) We
shali reserve the right to vary the parameter X to suit our needs. This degree of
freedom forms a part of our instructions to the controller.

The concept of using information about the deviation of the system from its
desired state to control the system is called feedback control. Information about the
state of the system is “fed back” to a controller, which utilizes this information
to change the system in some way. In the present case, the information is the
temperature T and the change is made in g. When the term wC(Tg — T;)) is
abbreviated to g, Eq. (1.4) becomes

q=9s+K(Tg—T) - (1.4a)
Transient Responses
Substituting Eq. (1.4a) into Eq. (1.3) and rearranging, we have
dT K. K. qs
— = . r—— + —— . .
Tldt +(WC+1)T 'T‘+WCTR wC (1.5)
where
. : pv.
. n = —
- w

The term 7, has the dimensions of time and is known as the time constant of the
tank. We shall study the significance of the time constant in more detail in Chap.
5. At present, it suffices to note that it is the time required to fill the tank at the
flow rate, w. T; is the inlet temperature, which we have assumed is a function
of time. Its normal value is T; , and g, is based on this value. Equation (1.5)
describes the way in which the tank temperature changes in response to changes
in T; and q.

Suppose that the process is proceeding smoothly at steady-state design con-
ditions. At a time arbitrarily called zero, the inlet temperature, which was at T;,,
suddenly undergoes a permanent rise of a few degrees to a new value T;, + AT}, as
shown in Fig. 1.2. For mathematical convenience, this disturbance is idealized to

T‘.+AT‘ 7—

7./

T‘ ( ]

(0] Time —> . FIGURE 1-2
. Inlet temperature versus time.



