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SPHERICAL WAVEFUNCTION ANALYSIS OF RADJATION
FROM THE PYRAMIDAL HORN

D.B. le Roux™ and J.H. Cloete
Department of Electrical and Electronic Engineering
University of Stellenbosch, 7600, South Africa

Introduction

The pyramidal horn is a simple and robust feed antenna. The exact
analysis of this antenna is complex because the surfaces of the
horn do not coincide with separable coordinate systems. The
pyramidal horn may be approximated as a quasi-pyramidal horn, if
the flare angles that describe the horn are measured from the same
point, Fig. 1. The quasi-pyramidal horn is a finite length part
of a radial waveguide that is described by surfaces of constant o
and s spherical coordinates in the x v 'z reference frame. The
horn is defined by the radial length & and the flare angles o,
and o,, defined in the xrz reference frame. The ¢ -0 plane
coincides with one side of the horn. o, is measured in the rz
plane. In this second reference frame the =z-axis defines the
boresight of the horn, and the x-axis coincides with the -2z-
direction of the first reference frame., The aperture dimensions
are defined by

@’ =2Rsin{#,/2)cos(8,/2). b’ =2Rsin{6,/2)cos(0,,/2) (1)
d=R{1-cos(8,/2)}sin(6,/2).

Quasi-pyramidal horn model ‘

The quasi-pyramidal horn model is proposed because it may be
analysed analytically wusing spherical wavefunctions [1,pp
279-283]. Furthermore the properties of the guided waves in the
throat of the pyramidal horn are closely related to the properties
of the radial waveguide. In this paper only the dominant TF,,
mode is considered. This mode is transverse electric with respect
to the radial direction. The indices o and | are associated with
the separation constants for the ¢ and ¢  dependence
respectively.

Assume that a source, to be defined, is placed in the waveguide at
radius R, from the origin. The T£,,, mode will be dominant if
kR,<v for all other modes, with v the values of the modal
separation constants that satisfy the boundary condition on the
surfaces of constant o', This means that these modes are below
the point of gradual cutoff. Thus the prepagation constants are
predominantly real and these modes are heavily attenuated. This
condition may be physically realised if the source

(a) E-field has even symmetry about the 6 =z/2 and ¢ =6,/2
planes and ¢,<¢, to ensure TE,, dominance.
(b) Is linearly polarized with E-field parallel to the r-axis.

CH2654-2/89/0000-0003 $1.00 ©1989 [EEE



(¢) Is placed in the vicinfty of iR,2v with v the smallest
non-trivial value that satisfies [1,p 282]

dP,(cos@,) dP,(cosd,) {2)
de, TR

0,=n-0,, 0,=n-6,)/2.
P.(cos8’) is the Legendre function of the first kind.

Subject to these conditions the outgoing electric field, with o
time dependence, is

Ere,y = hiPCkr) 22 {tP,(cos87) - P (-cos0'))a,., (3)

with a®(k) the spherical Hankel function of the second kind.
Radiation

Solutions for the fields in the quasi-pyramidal horn are strictly
valid if the horn extends to infinity. The aperture field may
however be approximated by the 7F,., mode field if 5,(kR)—k with
B.(kR) the modal phase constant in the radial direction and « the
free space wave number. It 1is assumed that end effects are
negligible. The approximation is good if the radiated field is
not needed close to the antenna. To simplify the boundary
condition it is useful to consider the horn enclosed by a
perfectly conducting sphere of radius & concentric to the apex of
the horn. A finite spherical wave expansion (SWE) is used to
desgribe the fields outside the sphere, with only outgoing waves
needed,

2 M N 4
E(F)-Z Z Z Q(’:’:"F(l:n' N-[kRm}+nn' MsN. ()
s=1me-M n=
max{l.|m)

The notation of [2,pp 9-26] is used, with R. the minimum sphere
radius that encloses all the sources. The expansion coefficients
are calculated by using the orthogonality properties of the
wavefunctions and enforcing the boundary conditions over the
sphere. Usually the SWE origin is chosen to minimize the number
of waves needed. In this case it is advantageous to choose the
x'r-z- coordinate system because the surface integral that
describes ¢w,, simplifies to a one dimensional numerical
integral. The coefficient o®. is then transformed to the xrz
coordinate system with known rotation coefficients [2,Appendix A2]
to get a better numerical representation for the field.

Results are shown in the xrz reference frame, for
R=-4.21A, 8,=35.3*, 6,=39.3*, From (1}, the aperture dimensions
are  «''-2.70a. b''=2.40A. d-6.66x10"%, The SWE is truncated at
N=36, M=16. From (2) the solution of the separation constant
is v=~4.1591466. Furthermore §B,(kR)=0.985«. Thus the aperture
field approximation is valid.



Conclusion

Fig.2 shows a comparison between the predicted and measured [3,p
57] far-field E-plane (¢-90°) pattern, with good agreement,
Comparison with Jull’s results [3,p 57] shows that the SWE method
is more accurate in predicting the radiation pattern than the
aperture integration (Al) method. The field may be calculated in
any direction and Fig. 3 gives representative results. The co-
and cross-polarization E-field are defined by the third definition
of Ludwig [4], with the reference vector parallel to the r-axis.
Furthermore the fields can easily be calculated at a finite
distance from the origin. The pyramidal horn is modeiled as a
physically realisable structure in contrast to the usual Al
methed, which assumes the aperture placed in an infinite, flat
conducting plane.
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TREATMENT OF VECTOR POTENTIAL IN A THREE-DIMENSIONAL
LATTICE NETWORK OF SPATIAL NETWORK METHOD

Norinobu Yoshida* and Ichiro Fukai

Dept. of Electrical Engineering, Faculty of Engineering
Hokkaido University, Sapporo, Japan

1. Introduction

In the analysis of electromagnetic field, the
vector potential has important roles especially when
sources exist. On the other hand, a physical existence
of the magnetic vector potential is recently discussed
by some experiments according to the A-B effect.

We have proposed the numerical vector analysis method
of the electromagnetic field in three-dimensional space
and time domain, which is named as the Spatial Network
Method.(1),(2) The method is based on both the
expression of the Maxwell's equation by the equivalent
circuit in the three-dimensional space and the
formulation by the Bergeron's method in time domain.
The method rnes many merits in analysis of dispersive
medium involving anisotropic characteristics.(3}-(5)

In this paper, we . propose the availability of
applying the equivalent circuit for electromagnetic
fields in the method to the vector potential fields in
three-dimensional space and time domain. The
electric vector potential is introduced as the dual
quantity of the magnetic vector potential to satisfy
the property of the equivalent circuit for the
Bergeron's method.(6) The validity of the treatment is
shown by computing the rotating magnetic field around
the straight line current from the magnetic and
electric vector potential,.

2. The equivalent circuit of the vector potential
We extend the lattice networks shown in Fig. 1 to
the vector potential field. The magnetic vector
potential A and the electric vector potential § are
defined to satisfy ths following eguations,
A
XS = -7 (= D) , (1a)
v at

78
VXa Pf;g

Here, the electric vector potential is supposed to
have an inverse sign to the ordinary difinition of it.
These equations satisfy the ordinary definition of the
magnetic vector potential and have similar forms to the
Maxwell's equation except difference of the position of
a negative sign. Table 1 presents the assignment of
each component of these equations at each node and the
correspondence between the circuit variables and the

(= B) . {1b)

CH2654-2/69/0000-0007 $1.00 (1089 [EEE



potential quantities. The assignment of the magnetic
vector potential to the voltage variable at the
electric node of the equivalent circuit for the
electromagnetic field is introduced from the property
of the 2nd term of Equ. (1a). The assignment of the
electric vector potential to the magnetic node is
introduced from Equ. (1b) as the same manner. The
lattice network is interpreted as the equivalent
circuit in which the line between nodes is a one-
dimensional transmission line and the node is a point
at which the continuity law of currents occurs. The
nodes are classified into two types as same as that in
the electromagnetic field. One is the electric node at
which each component of the magnetic vector potential
is treated as a wvoltage variable and the other is a
magnetic node at which each component of the
electric vector potential is treated as a voltage
variable. All circuit variables at the magnetic nodes
are also characterized by the symbol ' * ' because of
the duality of their physical meaning, as compared
with their interpretation at the electric nodes.
In Fig. 1, the imaginary cubics, for example, plotted
by the dashed lines or the chain lines is shown. In the
cubics, the condition ‘'div A = 0' or ‘divs = 0' is
confirmed respectively. Then the network satisfies the
wave equations when the space discretization Ad is
very smaller than the wave length as the same manner as
that in the electromagnetic field.

The fundamental square lattice in which the content in
Table 1 is illustrated is shown in Fig. 2. The symbol
'~>' presents the direction of the propagation defined
by P = 8 x A, which corresponds to the Poynting vector
in the electromagnetic field. Also the gyrator '—3p &'
is inserted in series with each magnetic node to show
the duality of the physical meaning of the circuit
variables of both nodes of each transmission line.

3. Analyzed Results

In Fig. 3, the analyzed model for a straight line
current source with sinusoidal variation in time
domain is shown. The steady state magnetic field
distribution around the source in the central x-z plane
are shown in Fig. 4. In this figure, (a) is calculated
from rotation of the magnetic vector potential and (b}
is computed from time derivative of the electric vector
potential, Both distribution agree well with each
other. Then the characteristics of this proposed method
formulated by both the magnetic and electric vector
potential is showm.

4. Conclusion

For the treatment of the vector potential, the gauge
condition must be considered (7). The Coulomb Gauge is
supposed in the above treatment. We are now studing the



