~ Lawrence Perko

Differential

- Equations and
Dynamical -
Systems

Springer- Verlag
2 LW & i d)




Lawrence Perko

Differential Equations and
Dynamical Systems

With 177 Ilustrations

3

Springer-Verlag

‘Nex_v York Berlin Heidelberg London
Paris Tokyo -Hong Kong Barcelona
=k f‘ (ﬁ £ z)

RN EEEBER



Lawrence Perko

Department of Mathematics
Northern Arizona University
Flagstaff, AZ 86011

USA
Editors
F. John J.E. Marsden L. Sirovich
Gourant Institute of Department of . Division of Applied
Mathematical Sciences Mathematics Mathematics
New York University University of California - Brown University
New York, NY 10012 Berkeley, CA 94720 Providence, R1 02912
USA USA USA
M. Golubitsky W. Jager
Department of Department of Applied
Mathematics Mathematics
University of Houston Universitit Heidelberg
Houston, TX 77004 Im Neuenheimer Feld 294
USA 6900 Heidelberg, FRG

Mathematics Subject Classification: 34A34, 34C35, 58F21, 58F25, 70K10

© 1991 Springer-Verlag New York, Inc. s

Al rights reserved. This work % not be translated ‘or copied in whole or in part without the
written permission of the publisher (Springer<Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connectio!x with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology gow known or hereafter developed is
forbidden. The use of general ﬁéﬁblive ndtfes, trade namés, trajemarks, etc., in this publica-
tion, even if the former are not épgcial! _‘,ideri{jﬁcd , is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by
anyone. .

Reprinted by World Publishing Corporation. Beijing, 1993
for distribution and sale in The People's Republic of China only
" ISBN 7 -5062-1431-8

ISBN 0-387-97443-1 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-97443-1 Springer-Verlag Berlin Heidelberg New York




Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series: Texts in
Applied Mathematics (TAM) .

The development of new courses is a natural consequence of a high
level of excitement on the research frontier as newer techniques, such as
numerical and symbolic computer systems, dynamical systems, and chaos,
mix with and reinforce the traditional methods of applied mathematics.
Thus, the purpose of this textbook series is to meet the current and future
needs of these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research level monographs. ;



Preface

This book covers those topics necessary for a clear understanding of the
qualitative theory of ordinary differential equations. It is written for upper-
division or first-year graduate students. It begins with a study of linear
systems of ordinary differential equations, a topic already familiar to the
student who has completed a first course in differential equations. An effi-
cient method for selving any linear system of ordinary differential equations
is presented in Chapter 1.

The major part of this book is devoted to a study of nonlinear systems
of ordinary differential equations. Since most nonlinear differential equa-
tions cannot be solved, this book focuses on the qualitative or geometrical
theory of nonlinear systems of differential equations originated by Henri
Poincaré in his work on differential equations at the end of the nineteenth
century. Qur primary goal is to describe the qualitative behavior of the
solution set of a given system of differential equations. In order to achieve
this goal, it is first necessary to develop the local theory for nonlinear
systems. This is done in Chapter 2 which includes the fundamental local
existence-uniqueness theorem, the Hartman—Grobman Theorem and the
Stable Manifold Theorem. These latter two theorems establish that the
qualitative behavior of the solution set of a nonlinear system of ordinary
differential equations near an equilibrium point is typically the same as
the qualitative behavior of the solution set of the corresponding linearized
system near the equilibrium point.

After developing the local theory, we turn to the global theory in Chap-
ter 3. This includes a study of limit sets of trajectories and the behavior of
trajectories at infinity. Some unsolved problems of current research inter-
est are also presented in Chapter 3. For example. the Poincaré-Bendixson
Theorem, established in Chapter 3, describes the limit sets of trajecto-
Ties of two-dimensional systems; however, the limit sets of trajectories of
three-dimensional (and higher dimensional) systems can be much more
complicated and establishing the nature of these limit scts is a topic of
current research interest in mathematics. In particular, higher dimensional
systems can exhibit strange attractors and chaotic dynamics. All of the
preliminary material necessary for studying these more advanced topics is
contained in this textbook. This book can therefore serve as a springboard
for those students interested in continuing their study of ordinary differ-
ential equations and dynamical systems. Chapter 3 ends with a technique
for constructing the global phase portrait of a two-dimensional dynami-
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cal system. The global phase portrait describes the qualitative behavior of
the solution set for all time. In general, this is as close as we can come to
“solving” nonlinear systems.

In Chapter 4, we study systems of differential equations depending on
a parameter. The question of particular interest is: For what values of the
parameter does the global phase portrait of a dynamical system change its
qualitative structure? The answer to this question forms the subject matter
of bifurcation theory. An introduction to bifurcation theory is presented
in Chapter 4 where we discuss bifurcations at nonhyperbolic equilibrium
points and periodic orbits as well as Hopf bifurcations. Chapter 4 ends
with a discussion of homoclinic loop bifurcations for planar systems and an
introduction to tangential homoclinic bifurcations and the resulting chaotrc
dynamics that can occur in higher dimensional systems.

The prerequisites for studying differential equations and dynamical sys-
tems using this book are courses in linear algebra and real analysis. For
example, the student should know how to find the eigenvalues and ®igenvec-
tors of a linear transformation represented by a square matrix and should
be familiar with the notion of uniform convergence and related concepts. In
using this book, the author hopes that the student will develop an appre-
ciation for just how useful the concepts of linear algebra, real analysis and
geometry are in developing the theory of ordinary differential equations
and dynamical systems.

[ 'would like to express my sincere appreciation to my colleague Terrence
Blows for his many helpful suggestions which led to a substantially im-
proved final version of this book. I would also like to thank Louella Holter
for her patience and precision in typing the original manuscript.
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Linear Systems

This chapter presents a study of linear systems of crdinary differential
cquations:

x = Ax (1)
where x € R™, A is an n x n matrix and
Fdr
e |
dt d;/_n
“ar |

It is shown that the solution of the linear system (1) together with the
initial condition x(0) = X is given by
x(t) = eftxg

where e/? is an n x n matrix function defined by its Taylor series. A good
portion of this chapter is concerned with the computation of the matrix
et in terms of the eigenvalues and eigenvectors of the square matrix A.
Throughout this book all vectors will be written as column vectors and AT
will denote the transpose of the matrix A.

1.1  Uncoupled Linear Systems

The method of separation of variables can be used to solve the first-order
linear differential equation
T =ax.

The general solution is given by

at

z(t) = ce

where the constant ¢ = z(0), the value of the function x(t) at time ¢ = 0.
Now consider the uncoupled linear system

1'31 = —I

.’i‘z = 2.1‘2‘
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This system can be written in matrix form as

x = Ax (1)

-1 0
[ 3)
Note that in this case A is a diagonal matrix, A = diag[—1, 2], and in general
whenever A4 is a diagonal matrix, the system (1) reduces to an uncoupled
linear system. The general solution of the above uncoupled linear system

can once again be found by the method of separation of variables. It is
given by

where

z1(t) = et @)
xo(t) = coe? 4
or equivalently by
e7t 0 ,
x(t) = g e2t|C€ (2)

where ¢ = x(0). Note that the solution curves (2) lie on the algebraic
curves y = k/x® where the constant k = cc;. The solution (2) or (2)
defines a motion along these curves; i.e., each point ¢ € R? moves to the
point x(¢) € R? given by (2) after time ¢. This motion can be described
geometrically by drawing the solution curves (2) in the z;, 2> plane, referred
to as the phase plane, and by using arrows to indicate the direction of
the motion along these curves with increasing time t; cf. Figure 1. For
¢y =c2=0,21(t) =0 and z(t) = 0 for all ¢t € R and the origin is referred
to as an equilibrium point in this example. Note that solutions starting on
the z;-axis approach the origin as ¢ — oo and that solutions starting on
the z,-axis approach the origin as t — —o0.

The phase portrait of a system of differential equations such as (1) with
x € R" is the set of all solution curves of (1)'in the phase space R™. Figure
1 gives a geometrical representation of the phase portrait of the uncoupled
linear system considered above. The dynamical system defined by the linear
system (1) in this example is simply the mapping ¢: R x R? — R? defined
by the solution x(¢,c) given by (2'); i.e., the dynamical system for this
example is given by

o(t,c) = [e(‘) egt] c.

Geometrically, the dynamical system describes the motion of the points in
phase space along the solution curves defined by the system of differential
equations.
The function
f(x) = Ax
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X2

Figure 1

on the right-hand side of (1) defines a mapping f: R> - R* (linear in this
case). This mapping (which need not be linear) defines a wector field on
R?; i.e., to each point x € R?, the mapping f assigns a vector f(x). If we
draw each vector f(x) with its initial point at the point x € R?, we obtain
a geometrical representation of the vector field as shown in Figure 2. Note
that at each point x in the phase space R?, the solution curves (2) are
tangent to the vectors in the vector field Ax. This follows since at time
t = to, the velocity vector vy = x(to) is tangent to the curve x = x(t) at
the point x¢ = x(¢) and since x = Ax along the solution curves.
Consider the following uncoupled linear system in R*:

I =1
Ty =2 (3)

T3 = —T3
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Figure 3

The general solution is given by

z1(t) = cr et

To(t) = coet
z3(t) = cze™ "
And the phase portrait for this system is shown in Figure 3 above. The
z1, @2 plane is referred to as the unstable subspace of the system (3) and
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the x4 axis is called the stable subspace of the system (3). Precise definitions
of the stable and unstable subspaces of a linear system will be given in the
next section.

PROBLEM SET 1

1. Find the general solution and draw the phase portrait for the follow-
ing linear systems:

CR,
®©) 5 o,
© 225
- (@) ﬁ; o
(e) i; : :2 T

Hint: Write (d) as a second-order linear differential equation with
constant coefficients, solve it by standard methods, and note that 3+
x3 = constant on the solution curves. In (e), find z,(t) = cze* and
then the x;-equation becomes a first order linear differential equation.

2. Find the general solution and draw the phase portraits for the fol-
lowing three~-dimensional linear systems:

Ty =1
(a) :f?z =Ty
I3 = T3
i‘l = -
(b) Ty = —Zg
.’i:g =3
:i‘l = -T2
(C) 1'2 = Iy
I3 = —T3

Hint: In (c), show that the solution curves lie on right circular cylin-
ders perpendicular to the z, x5 plane. Identify the stable and unsta-
ble subspaces in (a) and (b}. The z3-axis is the stable subspace in (c)
and the r;,z, plane is called the center subspace in (¢); cf. Section
1.9.
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3. Find the general solution of the linear system

Iﬁ} =T
o = axo
where a is a constant. Sketch the phase portraits for a = —1, ¢ = 0

and ¢ = 1 and nctice that the qualitative structure of the phase
portrait is the same for all @ < 0 as weil as for all o > 0, but that it
changes at the parameter value ¢ = 0. '

4. Find the general solution of the linear system (1) when A is the

n X n diagonal matrix A = diag[Ay, Az, ..., A,]. What condition on
the eigenvalues Aj,..., A, will guarantee that tlim x(t) = 0 for all
—

solutions x(t) of (1)?

What is the relationship between the vector fields defined by

ot

x = Ax
and

x = kAx
where k is a non-zero constant? (Describe this relationship both for
k positive and k negative.)

6. (a) If u(t) and v(t) are solutions of the linear system (1), prove that
for any constants @ and b, w(t) = au(t) + bv(t) is a solution.
(b) For
1 0
A=lo 2.
find solutions u(t) and v(t) of x = Ax such that every solution
is a linear combination of w(¢) and v(t).

1.2 Dlagonalization

The algebraic technique of diagonalizing a square matrix A can be used to
reduce the linear system

, x = Ax (1)
to an uncoupled linear system. We first consider the case when A has real,

distinct eigenvalues. The following theorem from linear algebra then allows

us to solve the linear system (1).

Theorem. If the eigenvalues Ay, Aa, ..., An of an n X n matriz A are real
and distinct, then any set of corresponding eigenvectors {vi,va,...,v,}
forms a basis for R™, the matrizc P = [v; v2 ... ;] is invertible and

P71AP = diag[);,..., A
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This theorem says that if a linear transformation 7: R" — R" is repre-
sented by the n x n matrix 4 with respect to the standard basis {e, es, .. .,
e, } for R”, then with respect to any basis of eigenvectors {vy.va, ..., v, },
T is represented by the diagonal matrix of eigenvalues, diag A1, Ay, ..., Al
A proof of this theorem can be found, for example, in Lowenthal [Lo].

In order to reduce the system (1) to an uncoupled linear system using
the above theorem, define the linear transformation of coordinates

y =P x
where P is the invertible matrix defined in the theorem. Then

x = Py,
y=P '%x =P 'Ax = P 1APy

and, according to the above theorem, we obtain the uncougled linear system
y =diagA, ..., Ay,
This uncoupled linear system has the solution
y(t) = diag[eM!,..., ey (0).

(Cf. problem 4 in Problem Set 1.) And then since y(0) = P~'x(0) and
x(t) = Py(t), it follows that (1) has the solution

x(t) = PE(t)P~'x(0). (2)
where F(t} is the diagonal matrix

E(t) = diag[eM, .. et

' Corollary. Under the hypotheses of the above theorem, the solution of the
linear system (1) 1s given by the function x(t) defined by (2).

Example. Consider the linear system

Ty = —x; — 329

fi'? = QIQ
which can be written in the form (1) with the matrix

-1 -3

A= .
The eigenvalues of A are A\ = ~1 and Az = 2. A pair of corresponding
eigenvectors is given by

el el
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The matrix P and its inverse are then given by

1 -1 Lo 11
P—[O 1} and P ~[0 1}.

The student should verify that

1,p_[-1 0
par=[1 9]

Then under the coordinate transformation y = P~!x, we obtain the un-
coupled linear system

h=-n

Y2 =2y2

which has the general solution y; (£) = cie™?, y2(t) = cze*. The phase por-
trait for this system is given in Figure 1 in Section 1.1 which is reproduced
below. And according to the above corollary, the general solution tc the
original linear system of this example is given by

—t
x(t) = P [e e‘;t] Plc
where ¢ = x(0), or equivalently by
z1(t) = cre"t + ca(e™t — e*)
(4)

T2(t) = coe®.

g

Y x2

L

Figure 1 | Figure 2
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The phase portrait for the linear system of this example can be found by
sketching the solution curves defined by (4). It is shown in Figure 2. The
phase portrait in Figure 2 can also be obtained from the phase portrait in
Figure 1 by applying the linear transformation of coordinates x = Py. Note
that the subspaces spanned by the eigenvectors v; and v, of the matrix
A determine the stable and unstable subspaces of the linear system (1)
according to the following definition:

Suppose that the n x n matrix A has k negative cigenvalues Aq,..., Mg
and n — k positive eigenvalues Agy1, ..., A, and that these eigenvalues are
distinct. Let {vy,...,v,} be a corresponding set of eigenvectors. Then the
stable and unstable subspaces of the linear system (1), E® and E*, are the
linear subspaces spanned by {vy,...,vi} and {viy1,...,Vv,} respectively;
ie.,

E® =Span{vy,...,vx}
E* = Span{viy1,...,Vn}.
If the matrix A has pure imaginary eigenvalues, then there is also a center

subspace E°; cf. Problem 2(c) in Section 1.1. The stable, unstable and
center subspaces are defined for the general case in Section 1.9.

PrOBLEM SET 2

1. Find the eigenvalues and eigenvectors of the matrix 4 and show that
B = P! AP is a diagonal matrix. Solve the linear system y = By
and then solve x = Ax using the above corollary. And then sketch
the phase portraits in both the x plane and y plane.

oalt
wasf
() A= “} _”

2. Find the eigenvalues and eigenvectors for the matrix A, solve the
linear system x = Ax, determine the stable and unstable subspaces
for the linear system, and sketch the phase portrait for

10 0
x=1]1 2 0 x.
1 0 -1

3. Write the following linear differential equations with constant coeffi-
cients in the form of the linear system (1) and solve:



