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Preface

In this, the fourth volume of our series, two general reas of lattide
dynamics are covered. Whereas the theoretical and experimental topics
considered in the preceding volumes were discussed on the basis of
crystalline solids, the first two contributions to the present volume, by
Weaire and Taylor and by Visscher and Gubernatis, are concerned with
lattice dynamical properties of noncrystalline and disordered solids, re-
spectively. The emphasis in these chapters is on the fundamentals of this
subject, as well as a survey of its present state, with the result that we
expect that these two chapters will continue to be standard references to
the subject matter even after it is developed further in subsequent work.
Given the current interest in amorphous materials such development is
inevitable. '

The remaining two chapters are devoted to optical properties of crystal-
line solids. In a long review, Anastassakis presents the theory and existin
experimental work on morphic effects .on mode properties of solids, i.e.
effects induced in crystals by the application of external forces such as
electric and magnetic fields and uniaxial stress and hydrostatic pressure,.
that are not allowed by symmetry in the absence of these forces. Although
not all morphic effects are directly optical effects, the overwhelming
majority of the many different kinds of morphic effects that have been .
studied experimentally have been examined either by the experimental
techniques of infrared absorption and Raman scattering, or both. This is a
subject that will undoubtedly be developed further in the future for its
ability to provide information about microscopic properties of crystals
unobtainable by other methods.

A topic of considerable technological importance, that at the same time
provides an opportunity for fundamental research activity, is infrared
absorption by multiphonon processes in highly transparent solids. This
subject is reviewed by Mills, Sparks and Duthler in this volumgq.
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1. Introduction .

It is the naturefof this subject that the defiriitive experiment usually
proves elusive. Likewise most theories are of the type which is often
entitled “An approach to...” A review of inconclusive data and specula-
tive theory would be unenlightening. For this reason, no attempt will be
made to produce an exhaustive compendium of data and hypothetical
models on ever more complicated systems. We shall instead focus our
attention on those few simple systems for which significant understanding
has been obtained. -

For details not covered in this chapter and for more complete bibliogra-
phies, the reader is referred to a number of recent reviews. The vibrational
properties of non-crystalline solids have been discussed by Bottger (1974).
Lucovsky (1974) and Lucovsky and Galeener (1976) have treated the
vibrational propertics of semiconducting glasses, and both Bell (1972) and
Dean (1972) have considered the oxide glasses. Riaman scattering in
amorphous semiconductors is the subject of reviews by Mort (1973),
Brodsky (1975) and Solin (1977). Extensive collections of both Raman and
infrared results on more “traditional” oxide glasses are contained in two
works by Wong and Angeil (1974, 1976).

The ingenu reader of the current literature of this subject (for whom we:
are presumably writing) may find himself confronted with obstacles to
understanding at a disconcertingly elementary level. The very word
“amorphous” means different things to different people. Even familiar
words raise questions in the mind of a critical reader. Does the term
“phonon” imply the existence of a k-vector? What do “acoustic” and
“optical” mean when applied to vibrations in an amorphous system?
Confusion abounds on such matters and, if nothing else, we hope in this
chapter to achieve sufficient clarity of thought and expression to dispel
some of it. Hence the short glossary presented in the next section.




4 D. Weaire and P. C. Taylor “Ch. 1,

1.1. A glossary of dangerous words: *

Acoustic
- . Applies to the branch of the dispersion relation for which w->0 as k—0.
Should notbe apphed toa non-penoche system w1thout suitable apologies.
Amo)phous -
Amorphous solids are not crystalline on any sxgmflcant scale, i.e. we

exclude polycrystalline solids from this category. See §2.

Band ' :
Leaving aside its looser experimental usage, this means a set of lattice
vibrations associated with a single branch of the dispersion relation w(k).
In the absence of periodicity it cannot be used in this or any other precise
sense, except in those cases where there are ranges of frequency where the
density of vibrational states is non-zero, separating discrete bands.
Disordered

Amorphous solids are a subSet of dlsordered solids. Crystalline sohds in
which there is substitutional or compositional randomness are termed
disordered, but not amorphous. :

Glassy / Vitreous

Those amorphous solids which can be: prepared by cooling from the .
liquid state are commonly called glassy or vitreous. Unfortunately this
distinction is not always adhered to in the literature.

Lattice »

Strictly speaking, a lattice ought to be periodic but the loose application
-~of this word to any infinite three-dimensional structure associated with
condensed matter is a relatively harmless indulgence.

Lattice vibration

In keeping with the above, we take this to mean a vrbratnonal normal

mode of an infinite three-dimensional structure.

Longitudinal, transverse .
Refers to the relative orientation of polarisation vector and k-vector.. In
the absence of either, these terms are doubly devoid of meaning in a

non-periodic system, except in the extreme low frequency regime.
Optic

Not acoustic. The same caveat applies in general although the existence
of a discrete range of vibrational frequencies might provide some justifica-
tion for the use of the term in a few cases.
Phonon

Quantised lattice vibration. We take the view, denied at least implicitly
by some, that periodicity of the structure is not essential to the use of this
term.
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2. Theoretical background

2.1. Introduction

We first consider in §§2.2 and 2.3 the two ingredients of the-dynamical
_ matrix, structure and force constants. At the-present stage, only the crudest
of force constant schemes are commonly applied to amorphous solids, and
it seems better to review these quickly than to refer to detailed accounts
elsewhere in this series. E
Given both structure and forces, how is one to predict vibrational
properties?  The remaining sections, §§2.4-2.10, are addressed to this
question and the variety of answers so far advanced. '

2.2. Structure

Vibrational spectroscopy has often been presented as a probe of struc-
ture, capable of revealing the form of local atomic arrangements in cases,
such as that of an amorphous solid, in which X-ray diffraction gives only
limited information. It is a point of view which has probably been
overemphasised and somewhat fanciful interpretations of data have some-
- times been made in attempts to justify it! A majomquestion of interest has
been —do amorphous solids have microcrystalline or continuous random struc-
tures? ' T

Some indication of the meaning of this question may be provided by
fig. 1. The weight of evidence has in most cases come to rest on the side of

identification of
recurrent short range
order

MICROCRYSTALLITE MODEL CONTINUOUS RANDOM MODEL

Fig. 1. Schematic diagrams of the local topology in the microcrystallite model (left) and the
continuous random network model (right).
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Fig. 2. Local bonding arrangement in Gl:oup IV amorphous solids where each atom has
four nearest neighbours in a tetrahedral configuration.

the continous random picture, which is generallyjattributed to Zachariasen
(1932).

In considering the details of the continuous random model, it is neces-
sary to distinguish covalently and metallically bonded solids. In the former
case it takes the form of a random network of nearest-neighbour bonds. For
example, the random network model of amorphous Si each atom has four
nearest neighbours in a tetrahedral configuration (fig. 2). It is difficult to_

Fig. 3. Random network model of glassy 8i0, (large spheres represent Si atoms) where the
silicon atoms are tetrahedrally coordinated and the Oxygen atoms are two-fold coordinated.
(Photograph Courtesy of Bell and Dean 1972; Crown Copyright.)
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convey the nature of this model descriptively. Interested readers are
sirongly recommended to build one themselves! In doing so, they will be
struck by the ease with which such networks can be buiit for sufficiently
low coordination numbers. One does not need to contrive to meet the local
bonding requirements by foresight or repeated building. A celebrated
handbuilt model is shown in fig. 3.

Ultimately, any particular random network model should be specified
by a table of coordinates. Statistical measures of structure, such as the
radial distribution function, cannot uniquely specify the model. They are,
of course, useful in any attempt to analyse its properties. Ring statistics, in
particular, have a peculiar fascination for many people and much emphasis
has been laid on them in characterising particular models.

As for amorphous metals, these are now considered to conform rather
well to the Bernal model (Bernal and Mason 1960), which is the dense
random packing of hard spheres. Here we cannot uniquely define nearest-
neighbour shells.

2.3. Force constants

~In the course of internecine disputes on the finest details of the 8isper-
sion relations of crystalline solids, the wood is often obscured by the trees.
Let us therefore state emphatically that the broad features of the vibrational
spectrum of most solids are dominated by nearest-neighbour central forces.
For qualitative purposes, it is therefore forgivable to contemplate the very
simple central force expression for the potential energy associated with

atom displacements u;,
: 1 < 2 k]
V=3 2 [ —w)r ] Q.1
i
neighbours

Here a; is the force constant associated with the atoms i and j, often taken
(in an elemental amorphous solid) to be equai for all nearest-neighbour
pairs ij. The vector r; connects the equilibrium positions of atoms i and J.
Different classes of solid part company when we attempt to improve upon
(2.1). For metals, longer-range central forces with an oscillatory depen-
dence on range may be incorporated and can in a few instances be
calculated from first principles (Heine and Weaire 1970). For covalently
bonded solids, semi-empirical schemes are used to incorporate short-range
non-central forces. Thus, in the simplest (axially symmetric) Born model, we
add to (2.1) a term of the form

Z Bii(“xﬂ - "/')29 ' - (2.2)

neighbours
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where again f; might be taken to be equal for all nearest-neighbour pairs
ij. This may be called a bond bending term, as contrasted with the bond
stretching term- (2.1).. The above form is quite satisfactory for many
purposes but entails difficulties associated with rotational invariance. This
complication may be avoided “entirely by using forces which are derived
from an ad hoc expression for the potential energy (as a function of atom
positions) which is manifestly rotationally invariant.. Following Keating
(1966), we may choose to write an expression quadratic in the change of
the scalar products of nearest-neighbour bond vectors from their
equilibrium values. This, when expanded in terms of displacements, gives-
for each pair of nearest neighbours a term proportional to

_AEA, [ (= ) ra (1) + (,— ulA’)'rA(l)]2° » (23)
H

Finally, the valence force field model deals with lengths and angles rather
than scalar products. Martin (1970) argues persuasively in support of the
superiority of the Keating model; at least for Group IV semiconductors,
but it is for our purposes a marginal consideration.

Semi-empirical models of such simplicity are rather passé in the context
of crystalline systems. Much more elaborate schemes have been developed,
involving a multiplicity of disposable parameters, although these have in
turn been replaced by shell models which yield similar results with less
extravagant use of adjusted force constants. This is achieved by the use of
extra degrees of freedom representing, in a crude classical sense, valence
electrons. For Group IV semiconductors Weber’s bond charge model
(1974), which is in the same spirit but uses bond charges rather than
atom-centred shells, is the latest and perhaps ultimate refinement-of this
empirical tradition. For crystalline Si and Ge, it leaves few mysteries
unveiled.

®(-172)Ze

OZe

Fig. 4. Schematic representation of the bond charge model as applied to Group IV
. amorphous semiconductors.

\
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Fig. 4 illustrates the general nature of this model. Recently it has been
applied to amorphous Group IV semiconductors by Meek (1977), as
described in §4.2.

Finally, highly ionic solids can only be reasonably d&scnbed by a model
which includes long-range coulomb forces between ions. This is elementary
in principle ‘but in practice it has been difficult to analyse the effects of
- such forces in an amorphous solid. .

24. The problem

How can we analyse the vibrational properties of a given random
network model? In discussing this question we shall concentrate for the
moment on the phonon density of states n(w), which .we define to be the
density (as a function of frequency) of vibrational normal modes.

In the study of cryszals this may be obtained: by integration of k-space,
once the dispersion relations w(k) have been determined. The latter may be
calculated by the diagonalisation of a secular matrix of dxmcnslons 3nx -
3n, where.n is-the number of atoms per unit cell. e

In a disordered system, the absence of periodicity implies that Bloch’

theorem is not applicable, and we are confronted with the necessity of -

using a much larger secular matrix. Strictly (and somewhat absurdly), it
may be said that the dynamical matrix must have dimensions dictated by
the number of atoms in an expenmcntal sample, but clearly a much more/
reasonable number (1072,10%?) should give results characteristic of an
infinite sample, for most purposes. Just how many atoms oonstxtutc an
effectively: infinite sample, in this case, depends in part on the boundary -
conditions-used. In some early work: in this field (Dean 1972, Bell 1972)
"atoms were either fixed or left free on the surface of a chosen random
network cluster. The surface/volume ratio is rarely small enough for this
to be done without the introduction of spurieus features arising from the |
surface. Apart from some special methods in which boundary conditions
are not relevant, we must therefore ensure that the boundary conditions
are such as to minimise surface features and /or make a projection of
local density of states at the centre of the cluster. Suitable boundary
conditions include the periodic case (which entails a somewhat demanding

" model »building exercise, rarely executed satisfactorily!) or the use of -
effective fields (§2.8).

~ We thus envisage a calculation of the eigenvalues of a dynamical matrix
of dimension 10? or more. This is feasible (up to about 10° or so), by any
one of a number of methods, direct or indirect, to be reviewed in the
sections which follow.

What are the limitations of such an approach?
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Firstly, calculations for any finite sample of practical size cannot tell us
anything about the low-frequency (Debye) regime.

Brute force cannot, of itself, give much qualitative insight, and must
therefore be supplemented by ‘more simplistic ad hoc models which are
analytically tractable and can be tested against it.

Numerical methods can also be expensive, although objections on such
grounds are often hypocritical, since it is not exactly cheap to employ
theorists chewing pencils in a search for more elegant approaches!

Attempts to devise simpler models fall into various categories. Firstly
there are those that are based on an analysis of the normal modes of
molecules representative of the local groupings of atoms in the solid.
Secondly there are calculations for pseudo-lattices, which have tree-like
branching structures, and have the advantage of providing analytically
soluble modeis. Thirdly, one may attempt to use calculations for crystals as
a basis for predicting the properties of an amorphous solid, usually by
considering the effects of random local distortions. This last approaeh is
often given a formal basis by means of the “Gubanov transformatian” by
which atoms of a crystal are placed in 1:1 correspondence with those of
an amorphous solid. No amount of formal labelling and matltematical
window-dressing can make this more than an empty gesture, in our
opinion.

There have also been studies (both experimental and theoretical) of
crystalline polymorphs with large unit cells with a view to providing a
“half-way house” between the simplicity of such crystal structures as
diamond cubic and the complexity of the random network.

All of these methods take liberties with the structure. Sometimes one can
simplify the form of the vibrationa! Hamiltonian instead, discarding, for
example, all but the nearest-neighbour central forces. One may thus arrive
at a model for which analytic proofs of exact results are available,
providing % skeletal framework for understanding the main features of
more realistic caiculations.

Finally, the jow-frequency regime (§5) requires special arguments t:asecs
on the continuum approximation and the consideration-of the possibility
of “tunnelling modes™. This remains the least satisfactory area of theory.

2.5. Diagonslisation

It would hardly be appropriate to devote much space here to a discus-
sion of methods of finding eigenvalues, but it does deserve some attention,
if only to indicate that considerable progress is still being made in this
field.



