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Preface

This book is based on a two-semester course in “The Mathematical
Methods of Physics'® which I have given in the mathematics department
of the University of Illinois in recent years. The audience has consisted
primarily of physicists, engineers, and other natural scientists in their first
or second year of graduate study. Knowledge of the theory of functions
of real and complex variables is assumed

The subject matter has been shaped by the needs of the students and by
my own experience. In many cases students who do not major in mathe-
matics have room in cheir schedules for only one or two mathematics
courses. The purpose of this book therefore, is to provide the student
with some heavy artillery in several fields of mathematics, in confidence
that targets for these weapons will be amply provided by the student’s own
special field of interest. Naturally, in such an attempt, something must be
sacrificed, and I have regarded as most expendable discussions of physical
applications of the material being presented

Again, in the short space allotted to each subject there is little chance to
develop the theory beyond fundamentals. Thus in each chapter I have
gone straight to (what I regard as) the heart of the matter, developing a
subject just tar enough so that applications can easily be made by the
student himself. The exercises at the end of each chapter, along with their
solutions at the back of the book, afford some further opportunities for
using the theoretical apparatus.

The material herein is, for the most part, classical. The bibliographical
references, particularly to journal articles, are given not so much to
provide a jumping-off point for further research as to give the reader a
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viii PREFACE

feeling for the chronological development of these subjects and for the
names of the men who created them.

Finally, I have, where possible, tried to say something about numerical
methods for computing the solutions of various kinds of problems. These
discussions, while brief, are oriented toward electronic computers and are
intended to help bridge the gap between the “there exists” of a pure
mathematician and the “find it 1o threc decimal places’ of an engineér.

I am indebted to Professor L. A. Rubel for permission to publish
Theofem 7 of Chapter 3 here for the first time and to Professor R. P.
Jerrard for some of the exercises in Chapter 7. Tothe well-known volume
- of Courant and Hilbert I owe the intriguing notion that, even in an age of
specialization, it may be possible for physicists and mathematicians to
understand each other.

' HErBERT S. WILF

Philadziphia, Pennsylvania

March, 1962
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_chaptcr 1

Vector spaces
and matrices

1.1 VECTOR SPACES

A vector space Visa s.ol!ecnon of ebjecks x, Y, . . . called vectors, satisfying
the following postulates:

(1) If x and y are vectors, there is & unique vector x + y in ¥ called the
sum of x and y.

an l!'x is a vector and « a complex number, there isa umquely deﬁned
vector &x in ¥ satisfying

(D a(x + yym or+ ay Q) («B)x = a(fix)

() (x + f)x = ax + fx 4 1 - x=x

) x+y=y+x ©® x+y+22=x+y+z
(IT1) There is a vector @ in V satisfying

) : X+0=04+x=1x

for every x in ¥, and, further, for every x in ¥'there Is a vector —x such that

® x+ (—x)=0.

We will use the notation x — y to mean x + (~ y), as might be expected.
(V) If x and y are vectors in V, there is 3 uniguely defined complex
number (x, y) called the “inner product” of x and y which satirfies
P (x,y) =(y x) (10) (ax,y) = &y, vy
(1) (x.x)x0 (12) ix + y.zi=(x, 2> + {y. 7)
(13) (x,y+2i=i0,y} 4 (x. 20 (1% (x.x. =0ifandoniyitx =0
t

w N
=i
D
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2 MATHEMATICS FOR THE PHYSICAL SCIENCES 1.1

We state ar coce that it is not our inteation to develop here 2 purely
axiomatic theory of vector spaces. However, in the remainder of this book
we shall meet several vector spaces of different types, some of which will
not “lock like” vector spaces at all. It is most important to note that the
enly qualifications & system needs in order to be a vector space} are those
just set forth, for only in this way can the true unity of such apparently
diverse topics as finite dimensional matrices, Fourier series, orthogonal
polynomials, integral equations, differential eigenvalue problems, and so
on, be perceived. An enlightening cxercise for the reader, for examnple,
will be found in analyzing various results as they are proved for special
sysiems, and asking whether or not the properties of the special system
were used, or whether, as will more often happen, we have proved a general
property of vector spaces.

Example i. The set of ordered n-tuples of complex numbers («y, oy, . ..\ %)
is a vector space V,, (Euclidean n-space) if we define for any vectors

x=(“15--~’an)9y =(ﬂ19‘":ﬁﬁ)s

(!5} x+y=(a1+ﬂ1:~--’an+ﬂn)
(16) Yx = ()"119 712’ LR }‘Gn)
n
an x,y) = 3 &b,
T=1

The complex numbers «,, a,, . . ., ®, are called the components of the vector x,
and postulates (D-(IV) ‘are easily verified here by direct calculation. For
example, to prove (11,
n n

18) X, X) = 3 &ty = Z jef2 2 0.

[ | =1
Example 2. The class of functions f(2) of a real variabie z, on the interval
ja, 51 of the real axis for which

rb
(19) | 1r@rias < «

forms a vector space, each vector now being a function satisfying (19). Here
the sum of two vectors f(z), g(x) is the vector f(x) + g{x), and the inner product
is defined by

)
(zm e = f J@g() de

<
for which the postulates can again easily be shown to be satisfied. This is the
space 2*(g, b), which is of particular interest, for exampie, in quantum mechanics.

t Gur terminology is not conventional. Actually axioms I-1II define a vector space,
whereas, with axiom IV the structure is sometimes called a *‘unitary space.” We usc
the term “‘vector space” for simplicity.



§1.2 VECTOR SPACES AND MATRICES 3

Example 3. Let w(#) % 0 be a fixed, real-valued, integrable function, defined
and non-negative on the interval [a, b] of the real axis. Consider ihe set of ali
polynomials
(21) f&) =ay + ;> + - + a7
with real coefficienits, and of degree = n, for some fixed n. Thus class foraw o
vector space if addition of two vectors (polynomials) is defined in the obvicus
way, and if the inner product is given by

b

(22) (f.g) ==} [F@gn(@) dz.

)

Itis in this vector space that we will develop the theory of orthogonal polynonials
in the next chapter.

1.2 SCHWARZ’S INEQUALITY AND OGRTHOGONAL SETS

Theorem 1. (Schwarz’s inequality). Let X, y be vectors in a vector space V.
Then

(23) 1, y)I? = (x. x)y, ¥)

the sign of equality holding if and only if there is @ complex number « such
that x = ay (i.e., if x and y are proportional).
Proof. Let 4 be any real number. By (11),

(24) (x + Ay, x)y, x4+ Ay, x)y) = 0.
Hence by (9), (12), and (i3),
(25) 0= (x,%) + 24|(x, I+ 2ix. Y2,y

for ali real 4.
Thus the discriminant of this quadratic polynomial is not positive, that is,

I, N — (x, ) Ix, P y) < 0.
If (x,y) # 0, we get
(26) (% P = (x,x)(y, y)

whereas if (x, y) = 0, (26) is obvious. Finally, suppose the sign of equality
holds in (26). Then in (25) we have a quadratic polynomial with zero
discriminant, which therefore is zero for some real value of 4, 5aY A
Referring to (14) and (24) we see that

27) X 4+ Ay, X)y = 0

which is to say that  is proportional toy. Conversely, if x = fy, substitu-
tion in (23) shows at once that the sign of equality holds.



4 MATHEMATICS FOR THE PHYSICAL SCIENCES §1.2

Two vectors x and y are said to be orthogomal if

(28) x,y) = 0.
The /ength of a vector x is defined by
(29) Ixl = (x. x)*

and is always a non-negative real number. In terms of the length, Schwarz’s
inequality (23) reads

(30) I(x, ¥)i = Ux} ilyh.

A finite or infinite sequence of vectors X;, X;. Xy, . . . is called an orthog-
onal set if

(31 (x;, x;) = 0 ), ,j=1,2,3,...)
and an orthonormal set if, in addition to (31), Wh\ave also
32 Ixft=1 (i=12,..)
The two conditions ,(31)lmd (32) are frequently combined in the form
(33 xox) =8, (Lj=12..)
where &,,, the “Kronecker delta,” is defined by
69 s=lo il

A vector x of length unity is said to be normalized.
* Now letf be an arbitrary vector in & vector space ¥, and let} xy, x;, x5, ... .
be an orthonormal set in ¥. The numbers

(39 =0 r=1,2,..)

are called the Fourier coefficients of f with respect to the set x;, X5, .. ..
These coefficients are of considerahle importance in applications. As an
example, consider the following approximation problem: let n be a fixed
integer, f a given vector of a vector space V,and x,, . .., x, an orthonormal
set lying in V. 1t is required to find numbers oy, 0y, - . . . =, for which the
vector

(36) h=a,X + ° + %X,

is the best possible approximation to f in the sense that if — hi is as smal
as possible.

t For exutence see 813
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To solve this problem, we have
@GN H—hjt=E—-hf--h

= (- ogXy — ~ 2,5, §—oyX; -~ — &.X,}
= (!-. f) - al(fy x}) e am(‘v xn)

— &l (Xp B) = - — &0, Ty + Jogi2 + 00 4 xR,
== (f’ f) - 11771 = &IYI e Gu?n - &nyn

+ laliz + e + iuuiz
= (£,£) + (2 — 2Re &, 7,) + -+ - + (o | — 2Re .7,
= () 4oy =yl o, =yl =l = R

Now, remembering thatf, ,, . . ., v, are fixed, and only a;, .. ., @, are
at our disposal, it is plain that the choice of oy, . . ., «,, Which minimizes the
“least squares error” Jf - hji%is

(38} a, =y, == (%,, )} (r=1,2,...,n).

Furthermore, if we make this optimal choice of the «, as the Fourier
coefficients of f, (37) shows clearly that -

0= (£,0) — |yl — - — |p,*
or

(39) Y v s (0 1),

This inequality, known as Bessel’s inequality, is seen to be a property of
the vector f and the set xy, . . ., x,, only, and therefore expresses a geaeral
property of Fourier coefficients.

It may happen that a given orthonormal set x,, X,, Xg, . . . has the property
that every vector { in the space ¥ can be approximated arbitrarily closely by
taking n, the number of vectors used from the set, large enough.

More precisely, kgt x,, X;, Xy, . . . be an orthorormal set with the property
thatif e > O and an arbitrary vector f of ¥ are given, there is an n for which
the vector (36) with (38) implies

If — B < e.

We then say that X;. x,. . . . is a complete orthonormal set. The fo!lowing‘
theorems are now clear:

Theorem 2. Let X,, X;, . . . be a complete orthonormal set in a vector space
V and let t be a vector of V. Then

(40) S ix,, D% =(f,f)  (Parseval's identity).
v=}
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Theorem 3. (The Riemann-Lebesgue Lemmay. If %, X,, . . . is an infinite
orthonormal set and £ is any vector of V, then

45 ix, Dl =0  (r— ).

Sirce the series on the left side of (39) obviously converges, its terms must
approach zero,

.2 LINEAR DEPENDENCE AND INDEPENDENCE

The vectors X,, %, . . ., X, are said to be linearly dependent if there are
constants o, . . . . &, 0Ot aii zero, such that

(42) %N + 0 b aX, =0

Otherwise the vectors are linearly independen.

Let xy, Xy, . . ., X, be lineariy independent. We wish to transform the
setx;, . . ., X, mto a new sety,, ..., y, having the properties: (i}y,,...,¥,is
an orthonormal set, (ii) eachy, isa linear combination of thex,(j=1,..., n).
This vnay be accomplished by the following procedure, called the Gram-
Schmidt process.

First, take

X
143} ¥, = —
. ' %,
Then, clearly jjy,)| = 1. Next. assume
Yo' =X, — Ay,

and deiermine the constant 4,, such that (y,', y,) = 0. i.e., take

Ay = (Y. Xy).
Since X,. X, are linearly independent, y,’ 5% 0, and we set

Ys = —&'——
Iyt _
In general, if y;, ¥y, . . ., Y& bave been constructed, write
(44) Fre1 ™ Xpig = Oy = T =Y,
and determine the constants oy, . . ., 0 so that
45 Giuyd=0  (=L12...,4

that {s, choose

(46) o = (Y X)) (=L2....K).
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As before, y; . # 90, and takmg ¥, 1= ¥i 4 ./ {¥c 11 ], We haveconstracted
the next vecior in the set. )

A vector space ¥ 15 said to be of dimension n if it contains n lineariy in-
dependent vectors, butevery # 4 1 vectors are linearly dependeni. A space
which for every integer r contains » linearly independent vectors is said to
be infinite dimensicnal. 8y viriue of the Gram-Schmidt process we see that
the dimersion of a vector space is alsc the length of the longest orthoncrmal
set contained in the space.

A set of vectors xy, Xy, . . . . X,, 15 said i¢ span a vector space V if every
vector of ¥ is a linear combination of x;, X, ..., X,, that is, if { is an
arbitrary vector of ¥, there exist complex numbers oy, o,, ... such that

(47 = oyx, + X, + -0,

A set of vectors X;, X, . . . is said to form 2 dasis for a vector space ¥ if
(i) the set spans the space and (i) the set is linearly independent.

1.4 LINEAR OPERATORS ON A VECTOR SPACE

A linear operator on a yector space ¥ is a rule which assigns to each
vector f of V a unique vector 7T of ¥, in such a way that

(48) Taf + gy =aTf+ Tg
for evary pair of vectors f, g in V' and every complex number o.
Example . For Euclidean n-space, the operator which associates with

X = (05 .. p0p)
the vector

TX =(“1,°‘1+¢3,!11 +<x,+ot3,"-,u1 Foaxp o oay)
is a linear aperator.

Example 2. In#*q, b) the rule which associates with the vector f(z) the vector

Tf(x) ==‘f fdy (asesb)
is a linear operator.

Henceforth the term “operator” will invariably refer to a linear operator
on the space in question. ,

The identity operator 1 is the operator whick assigns to any vector f the
vector f itself, i.e.,

(49) ff=f  Q@lifn V).
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This is clearly linear. Twa operators T, U'sre said to be equalif their effect
on every vecior of ¥ is the same, that fs, 7 = U means

(50} Te=Ul (@ifin ¥).
The product TU of two operators 7 and U is defined by
(51 (T = T(US.

in general, we o not have U == UT. ¥ TV = UT, however, we say that
T commudes with U, and, in any case, the commutator [7, U] of two
operstors is

(32; [FU}=7TU - UT
50 that two operstor:s cotmute if and only if their commuiator is the zero
operator.

Let 7'be an optrate oo V. There may ov may not bp an operator Uon
V such that
UT = TU = I

If there is such a U, we say that U is the inverse of T, and write U = T-1.
Hence

(53) TAT =TT = [,

The operator T-%, when if exists, *undoes” the work of T in the sense that
if f is any vector of ¥, we have

(54 T-XTY) = (T Tme M = £,

An operator which has an inverze will be called nomsingwlar, otherwise the
operator is singwlar. A simple propesty of the inverse operator is
Thearemd. The inverse qf aproduct is the pndntr of the imverses in reverse
order, i.e.,

(59) | (STY = 71571

if Sand T are m.ringtdar

Provof. ‘ )
(STXT-5-Y) ='S£I7“‘)sf* = SIS~ = S5 = ]
(T-1SI)ST) = T-YES)T = T-UT = T2T = [

which was to be shown.

1.5. EIGENVALUES AND HERMITIAN OPERATORS

Lei 7 be an operator on & vector space V.. Among all the vectors of ¥,
there may be some nonzero veetors which, when operated on by T, do not



