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Preface

Geometric topology may roughly be described as the branch of the
topology of manifolds which deals with questions of the existence of
homeomorphisms. Only in fairly recent years has this sort of topology
achieved a sufficiently high development to be given a name, but its
beginnings are easy to identify. The first classic result was the Schonflies
theorem (1910), which asserts that every l-sphere in the plane is the
boundary of a 2-cell.

In the next few decades, the most notable affirmative resuilts were the
“Schonflies theorem™ for polyhedral 2-spheres in space, proved by J. W.
Alexander [A,}, and the triangulation theorem for 2-manifolds, proved by
T. Radé [R,]. But the most striking results of the 1920s were negative. in
~1921 Louis Antoine [A,] published an extraordinary paper in which he
showed that a variety of plausible conjectures in the topology of 3-space
were false. Thus, a (topological) Cantor set in 3-space need not have a
simply connected complement; therefore a Cantor set can be imbedded in
3-space in at least two essentially different ways; a topological 2-sphere in
3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres
in 3-space, there is not necessarily any third 2-sphere which separates them
from one another in 3-space; and so on and on. The well-known “horned
sphere” of Alexander [A,] appeared soon thereafter. Much later, in 1948,
these results were extended and refined (and in some cases redone) by
Ralph H. Fox and Emil Artin [FA).

The affirmative theory was resumed with the author’s proof [M, M)
that every 3-manifold can be triangulated, and that every two triangula-
tions of the same 3-manifold are combinatorially equivalent. The second of
these statements is the Hauptvermutung of Steinitz. Then, in 1957, C. D.
Papakyriakopoulos revolutionized the field by proving the Loop theorem.

\{



Preface

A [oop is a mapping of a i-sphere into a space. The Loop theorem is as
follows. Let M be a polyhedral 3-manifoid with boundary, and le.t B t?e its
boundary. Let L be a loop in B, and suppose that L is contractible in M
but not in B. Then there is a polyhedral 2-cell D in M, with its boundary in
B, such that the boundary of D is not contractible in B.

In 1971 Peter B. Shalen [S,] found a new proof of the triangulation
theorem and Hauptvermutung. His proof is “almost PL,” in the sense that
the set-theoretic part of the argument is elementary, almost to the point of
triviality, and the main substance of the proof belongs to piecewise linear
topology, with heavy use of the Loop theorem. Following Shalen’s exam-
ple, and using some of his methods, especially at the beginning, the author
developed the proofs presented below, in Sections 30-36.

The historical account just given will also serve as a summary of the
contents of this book. The treatment of plane topology is rudimentary.
Here traditional material has been reformulated, in “almost PL” terms, in
the hope that this will help, as an introduction to the methods to be used in
three dimensions, and that it will bring three-dimensional ideas into
sharper focus. The proofs of the triangulation theorem and Haupvermutung
are largely new. as explained above. So also is our proof 6f the Schonflies
theorem. But most of the time, we have followed the historical order, This
is not because we were trying to write a history; far from it. The point,
rather,-is that the historical order was the natural order of intellectual
motivation. :

Recently, A. J. 8. Hamilton [H,] has published yet another proof of the
trigngulation theorem, based on methods which had been developed by
Kirby and Siebenmann for use in’ higher dimensions. His proof and
presentation are shorter and ‘more learned than ours, by a very wide
margin in each respect. .

This is a textbook -and not a treatise, and the difference is important. A
presentation which looks elegant to a professional expert may not seem
elegant, or even intelligible, to a student who is encountering certain ideas °
for the first time. We have furnished a very large number of problems. One
way 10 teach a course based on this book is to spend most of the classroom
time on-discussion of problems, treating much of the text as outside
reading. A warning is needed. about the style in which the problems are
written. This warning is given at the end of the preface, in the hope of
minimizing the chance that it will be overlooked.

References to the literature, in this book, are meager by normal stan-
dards. Whenever I was indebted to a particular author, and knew it, [ have
given a reference. But I have made no systematic effort to search the
literature thoroughly enough to find out who deserves credit for what.
Many of the proofs below are new, and many others must be adaptations
(conscious or not) of folklore. Here again I have made no attempt to find
out which is which. I believe, however, that all papers published since 1945
have been cited when they should have been.

vi



Preface

In 1975-76 at the University of Texas, and earlier at the University of
Wisconsin, the manuscript of this book was used in seminars conducted by
Prof. R. H. Bing. The faculty members participating included Profs. Bing,
Bruce Palka, Car! Pixley, Michael Starbird, and Gerard Venema. The
students included Ms. Mary Parker, Ms. Fay Shaparenko, and Messrs.
William E. Bell, Joseph M. Carter, Lee Leonard, Wayne Lewis, Gary
Richter, and Frank Shirley. I received long critical reports prepared by
Messrs. Bell, Henderson, and Richter. If I had not had the benefit of these
reports, then the text below would include more errors and obscurities than
it does now. Finally, thanks are due to Mr. Michael Weinstein, who edited
the manuscript for Springer-Verlag. In the course of dealing with matters
of form, Mr. Weinstein detected a dismaying number of minor lapses
which the rest of us had missed. The responsibility for the remaining
defects is of course my own.

Finally, a word of warning about the problems in this book. These are
composed in a way which may not be familiar. Most of them state true
theorems, extending or elucidating the preceding section of the text. But in
a very large number of them, false propositions are stated as if they were
true. Here it is the student’s job to discover that they are false, and find
counter-examples. Problems cannot be relied on to appear in the ap-
proximate order of their difficulty. Some of them turn out, on examination,
to be trivial, but some are very difficult. Thus the problems are intended to
furnish the student with an opportunity to work on mathematics under
conditions which are not hopelessly remote from real life.

Edwin E. Moise

New York City
January, 1977
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Introduction

We shall use the following definitions, notations, and conventions, most of
them standard, but a few not.

R is the set of all real numbers. R* is the set of all nonnegative real
numbers. Z is the set of all integers. Z* is the set of all nonnegative
integers. R” is Cartesian n-space, with the usualf linear structure, the usual
distance function, and the usual topology. (We shall always be dealing
with cases in which n < 3.) The empty set is denoted by @.

A metric space is a pair [X, d}, where X is a nonempty set and d is a
function X X X —R, subject to the usual conditions:

(D.1) d(P, Q) > 0 always.

(D.2) d(P, Q)=0if and only if P= Q.

(D.3) d(P, Q)=d(Q, P) always.

(D.4) (the triangular property) d(P, Q)+ d(Q, R) » d(P, R) always.

Under these conditions, d is called a distance function for X. By abuse of
language, we may refer to the set X as a metric space, if it is clear what
distance function is meant.

In a metric space [X, d}, for each P in X and each ¢ > 0, we define the
(open) e-neighborhood of P as the set

N(P,e)={Q|Q EXandd(P, Q)<e}.
More generally, for each M C X, and each ¢ > 0, the e-neighborhood of M
is
N(M,e)={Q|Q €X and d(P,Q)<c¢ forsomePEM ).
We define
N =N(d)={N(P,e)) PEX and ¢ >0}.



Geometric topology in dimensions 2 and 3

N (d) is called the neighborhood system induced by d. A set U C X is open if
it is the union of a collection of elements of 9. The set of all open sets is
0 = 0(IM)= O(IN(d). O is called the topology induced by I (or by d).
Under these conditions, the pair [ X, O} is a topological space, in the usual
sense; that is:

O.N ged.

0.2) xXe0.

(0.3) O contains every union of elements of €.

(0.4) © contains every finite intersection of elements of ©.

Closed sets, limit points, and the closure M of a set M C X are defined
as usual. The closure may also be denoted by Cl M.

In a topological space, let M and N be sets such that N contains an
open set which contains M. Then N is a neighborhood of M. (Note that this
is not a new definition of the term neighborhood; rather, it is a definition of
the relation is a neighborhood of.)

Let [X, 0] be a topological space. For each nonempty set M C X, let

O|M = (M nUlU€0).

Then O|M is called the subspace topology for M, and the pair {M, O{M]is
called a subspace of [X, ©]. In this book, when subsets of topological
spaces are regarded as spaces in themselves, the subspace topology will
always be intended.

Let V be a subset of R™, such that V forms a vector space relative to the
operations already defined in R™. Let y, € R™, and let

H=V+ yy={w|w =0+ v, for some v € V}.

Then H is a hyperplane. If dim V = k, then H is a k-dimensional hyper-
plane. If ¥ C R™, and no k-dimensional hyperplane, with k < m. contains
more than & + 1 of the points of ¥, then V is in general position in R™.

A set W C R™ is convex if for each v, w & W, W contains the segment

bw={av+,Bw)a,ﬁ>0,a+ﬂ=l}.

The convex hull of a set X C R™ is the smallest convex subset of R™ that
contains X (that is, the intersection of all convex subsets of R™ that
contain X).

Let V= {0y, vy, ..., 1,} be a set of n + 1 points, in general position in
R™, with n < m. Then the n-dimensional simplex (or n-simplex)

n
a" =gy, ...,

is the convex hull of V. The points of ¥ are ertices of o”. The convex hull
7 of a nonempty subset W of V is called a face of o”. If 7 is a k-simplex,
then 7 is called a k-face of o”. (A 1-simplex is called an edge.) Under these
conditions, we write 7 < 0", (This allows the case + = o") A (Euclidean)

2



0 Introduction

complex is a collection K of simplexes in a space R", such that -

(K.1) K contains all faces of all elements of K. .

(K2) Ifo,TE€K,and o N 75 @, then o N 7 1s a face both of ¢ and of 1.

(K.3) Every o in K lies in an open set U which intersects only a finite
number of elements of X. )

The vertices of the elements of K will be called vertices of K. For each
i » 0, K' is the i-skeleton of K, that is, the set of all simplexes of K that
have dimension < /. ‘

These definitions will of course be generalized later, but for quite a
while we shall be concerned only with finite complexes in R

If K is a complex, then | K| denotes the union of the elements of K, with
the subspace topology induced by the topology of R™. (Thus we shall think
of {K| ambiguously, as either a set or a space.) Such a set is called a
polyhedron. If K is a finite complex, then |K| is a finite polyhedron.

The word function will be used in its most general sense. Thus a function

fA->B

is a triplet { f, A, B], where 4 and B are nonempty sets, and f is a collection
of ordered pairs (a, b), with a € 4, such that (I) each a € A4 is the first
term of exactly one pair in f, and (2) the second term of a pair in f is
always an element of B. We define f(a) (a€ A) and f(A") (A" C A) as
usual; and we define

71 (b)={alf(a)=b) (b € B),
f7Y(B)y={alf(a)e B’} (B'CB).

If f(a) = f(a')=a = a’, then f is injective. If f(4) = B, then f is surjective,
and we write

fi4—> B.
If both these conditions hold, then f is bijective, and we write
f: A< B.

A is called the domain, and B the codomain. (Note that the term surjective
would have no meaning if the codomain were not regarded as part of the
definition of the function.)

Barycentric coordinates, for a (Euclidean) simplex ¢”, are defined as
usual. (See Problems 0.10-0.15.) The barycentric coordinates of the points
P of 6" are linear functions of the Cartesian coordinates, and vice versa. A
function f: 6— 1 is linear if the coordinates of a point f(P) are linear
functions of those of P (in either sense of the word coordinate). If also
vertices are mapped onto vertices, then f is simplicial.

Let G and H be collections of sets. If every element of G is a subset of
some element of H, then G is a refinement of H, and we write G € H.

Let K and L be complexes, in the same space R". If L < K, and
[L] = {K], then L is a subdivision of K, and we write L < K. '
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Theorem 1. Every two subdivisions of the same complex have a common
subdivision.

Let [X, 0] and {Y, O’] be topological spaces, and let f X5 Y be a
function. If for each open set U in Y, f~'(U) is open in X, then f is a
continuous function, or a mapping. If such an f is bijective, and both f and
f~ ! are mappings, then f is a homeomorphism. 1f there is a homeomorphism
f: X< Y, then the spaces are homeomorphic.

Let K and L be complexes, and let f be a mapping {K|—|L|. If each
mapping flo (6 € K) is simplicial, then f is simplicial. If there is a
subdivision K’ of K such that each mapping f|o (¢ € K’) maps o linearly
into a simplex of L, then f is piecewise linear. Hereafter, PL stands for
piecewise linear, and a PLH is a piecewise finear homeomorphism.

Let K and L be complexes, let ¢ be a bijection X% L% and for each
v € K° let v’ = ¢(v). Suppose that if vyv, . . . v, € K, then v}p} . .. v, € L,
and conversely. Then ¢ is an isomorphism between K and L. If there is
such a ¢, then K and L are isomorphic. 1f K and L are complexes, and have
subdivisions X’, L’ which are isomorphic, then K and L are combinatorially
equivalent, and we write

K~_L.

Theorem 2. K~ L if and only if |K| is the image of |L| under a PLH.

Theorem 3. Combinatorial equivalence is an equivalence relation.

PROOF (SKETCH). By Theorem |1, the composition of two piecewise linear
homeomorphisms is a PLH. Now use Theorem 2. 0

An n-cell is a space homeomorphic to an n-simplex. A 1-cell is ordin-
arily called an arc, and a 2-cell is often called a disk. A combinatorial n-cell
is a complex which is combinatorially equivalent to an »-simplex (or, more
precisely, to a complex consisting of an n-simplex and its faces). _

In a topological space, a set A is dense in a set B if A CBCA A
topological space [X, O] (or a metric space [X, d]) is separable if some
countable set is dense in X.

An n-manifold is a separable metric space M" in which every point has a
neighborhood homeomorphic to R”, If every point lies in an open set
whose ‘closure is an n-cell, then M” is an n-manifold with boundary. The
interior Int M™ of M" is the set of all points of M" that have open
Euclidean neighborhoods in M " (that is, neighborhoods homeomorphic 1o
R"); and the boundary Bd M" is the set of all points of M”" that do not.
Thus an n-manifold with boundary is an n-manifold if and only if
BdM"=g.

The manifold-theoretic boundary, as just defined, is in general different
from the topological frontier of a set U in a space X. This is

FrU=Fr,U=UnX-U.
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Only in very special cases are these the same. For example, if M? is closed
in R?, then it turns out that Bd M2 = Fr M?; but if we regard M2 as a
subspace of R then Bd M2 is the same as before, while Fr M % becomes
all of M2 (The proofs are far from trivial,) Similarly, except in very special
cases, Int M" is different from the topological interior of a set M in a
space X; the latter is the union of all open sets that lie in M.

Let K be a complex, such that the space M = K| is an n-manifold (or
an n-manifold with boundary). Then K is a triangulated n-manifold (or a
triangulated n-manifold with boundary). Sometimes, by abuse of language,
we may apply the latter terms to the space M = |K|, if it is clear what
triangulation is intended.

In addition to Bd and Fr, we now have yet a third kind of “boundary.”
Let X be a triangulated n-manifold with boundary. Then the combinatorial
boundary 3K of K is the set of all (n — 1)-simplexes of K that lie in only
one n-simplex of X (together with all faces of such (n — 1)-simplexes). Note
that 3 is an operation on complexes to complexes, and not on spaces to
spaces. It is easy to show that |0K is invariant under subdivision of X, and
hence that f(|dK|) = 39f(]K|) whenever f is a PLH. Thus 9 is adequate for
the purposes of strictly PL topology, in which combinatorial structures are
the sole objects of investigation. But 3 is not adequate for our present
purposes, because we propose to investigate the relation between combina-
torial structures and purely topological structures. We shall show (Theo-
rem 4.9) that if X is a triangulated 2-manifold with boundary, then
Bd | K| =|3K|. The proof uses the Jordan curve theorem (Theorem 4.3).
The corresponding theorem for 3-manifolds with boundary is of a higher
order of difficulty. In Section 23, we shall deduce it from the following
classical result of L. E. J. Brouwer.

Theorem 4 (Invariance of domain). Ler U be a subset of R”, such that U is
homeomorphic to R". Then U is open.

See W. Hurewicz and H. Wallman [HW], p. 95.

It may be possible to avoid the use of Brouwer’s theorem (or some
equally deep result in a continuous homology theory) by a long series of ad
hoc devices; but this hardly seems worth the trouble, even if it can be
done, and the author does not propose to find out whether it can be done.

In a complex K, for each vertex v, St v is the complex consisting of all
simplexes of K that contain v, together with all their faces. This is the star
of v in K. The link L(v) of v in K is the set of ali simplexes of St v that do
not contain v. If |K| is an n-manifold, and each complex Stp is a
combinatorial n-cell, then K is a combinatorial n-manifold. Similarly for
manifolds with boundary.

The above definitions are based, at this stage, on the definition of a
(Euclidean) complex. A later generalization of the idea of a complex will
give a more general definition of a combinatorial manifold.



Geometric topology in dimensions 2 and 3

We shall assume that the reader knows the bare rudiments of the
homology theory of complexes. We shall always use integers as
coefficients; thus the n-dimensional homology group H, (K) will always be
the group H,(K, Z). We shall never use relative homology, singular homol-
ogy, or cohomology. :

PROBLEM SET 0

See the remarks on problems, at the end of the preface. Prove or disprove
the following propositions.

L Let [X,d] be a metric space, let 9N = N(d), and let © = O(N). Then ©
satisfies Conditions O.1-0.4 of the definition of a topological space.

Definition. Let 4 and d’ be two distance functions for the same nonempty
set X. If O0(9(d)) = O(9(d")), then d and d’ are equivalent.
2. Let [X, d] be a metric space. Then there is a bounded distance function d’ for
X such that 4 and &’ are equivalent.

Definition. A Hausdorff space is a topological space in which every two
points lie in disjoint open sets.

3. Let [X, O] be a topological space in which every point has an open neighbor-
hood homeomorphic to R2 Then X, 9] is Hausdorff.

4. Let[X, 0] be a topological space; and suppose that for every topological space
1Y, ©'), every function f: X - Y is continuous. What can we conclude about
07 In particular, does it follow that [X, 0] is metrizable, in the sense that
0 = 0(MN(d)) for some distance function d?

- Let C be a circle in R Then C is in general position in R,
- Let C be a circle in R*. Then C is in general position in R?,

. R? contains an infinite set which is in general position in R?,

@ N N

- Let K and L, be collections of simplexes in R, satisfying K.1 and K.2 in the
definition of a complex, but not necessarily K.3. The relation of isomorphism
between K and L is defined in exactly the same way as for complexes. If there
is an isomorphism between K and L, then there is a homeomorphism between
|K| and |L|. (Here, as for complexes, |K| is the union of the elements of K
similarly for L. |K| and L] are being regarded as spaces, with the subspace
fopology.)

9. For each W C R™, the convex hull of W is convex.
10. Let V= {9y, »,, ..., v,} be in general position in R™, with n < m. Let
n
= {v|v= S av,a, 50, Sa; = l}.
i=0 :
Then 7° is convex.
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12.

13,

14,

15,

16.

17.

18,

19,

21.
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Let 77 be as in Problem 10, and let v € ¢”, with v # v,. Let
n
= {Wiw= S Bv.B»0,ZB8= l}-
i1
Then there is point w of 7"~ such that v € vow.

Let ¥V and 7" be as in Problem 10.-Then every convex set that contains V
contains 7",

0" = 1" That is,
vgd; .. .Uy = {olv=Zav, &, 30, Tax; = 1},
Given V= (vy, vp,...,0,)CR" (n< m). For 1 <i<n,let o] =0, — vy and

let V"= {v]}. If V'is in general position in R”, then V" is linearly independent,
and conversely.

Given 0” = vgp, .. . v, CR™. Let
v=32auv, w=232 By Ec”

as in the definition of 7" = 0” in Problems 10-13. If v = w, then o, = B, for
each i. (Thus it makes sense to define the barycentric coordinates of v as
(ag ay, . . ., a,))

For 1 < j < m let E; be the point of R™ with 1 as its jth coordinate, and with
all other coordinates = 0. Thus

M

(x, %3 ...,x,)= xE,.

1

J

Given 0" = ygv, ... v,, there are numbers a; 0<i<n 1<;j<m) and
numbers &, (1 < j < m) such that if v € ¢”, and

v=3a0,=3xE,
then
X =2;0+b;

for each j. (It is in this sense that the Cartesian coordinates of v are linear
functions of the barycentric coordinates of v.)

Let v € 0", v=23a0,=3xE, as in Problem 16. Then the numbers a, are
linear functions of the numbers x;.

Let K be a finite complex in R? and let {Z,} be a finite collection of lines.
Then K has a subdivision K, in which each set L, n |K| forms a subcomplex.

Every two subdivisions K, K, of a 2-simplex ¢ c R? have a common subdivi-
sion.

. Let K be a 2-dimensional complex (that is, a complex in which every simplex

has dimension < 2). Then every two subdivisions of X have a common
subdivision.

Let K and L be complexes. If K and L are isomorphic, then there is a
simplicial homeomorphism between |K| and |L|.
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22.

23,

24,

28,

26.

27.

29,

3L

32,

33

For 2-dimensional complexes, the composition of two piecewise linear homeo-
morphisms is a PLH.

Let o and 7 be (Euclidean) simplexes, and let f be a piecewise linear homeo-
morphism 6 — 7. Then f(o) is a simplex.

Let K and L be complexes. If there is a PLH between {K| and |L|, then
K~ L; and conversely.

For 2-dimensional complexes, combinatorial equivalence is an equivalence
relation.

Let K be a finite complex in R?, and let {E,} be a finite collection of planes.
Then K has a subdivision in which each intersection E, N |K| forms a subcom-
plex.

Every two subdivisions of a 3-simplex have a common subdivision.

. Let K be a 3-dimensional complex. Then every two subdivisions of K have a

common subdivision.

In a topological space, if U is open, then Fr U= { — U.

. Let [X, 0] be a Hausdorff space in which every point has an open neighbor-

hood which is homeomorphic to R. Then [X, €] is separable and metrizable,
and thus is a 1-manifold.-

Let [X, O] and [Y, €] be topological spaces, and let f be a function X — Y. If f
is bijective and continuous, then f is a homeomorphism.

Every two combinatorial 2-cells are combinatorially equivalent. Similarly for v
combinatorial 3-cells.
Let vopy ... v, be an n-simplex in R”. Then every point v of R” can be
represented in the form

’ v=23auv,

where a; €R for each ;.

. Let K be a complex. If |K| is compact, then X is finite. (Of course the converse
is trivial.)



Connectivity

A path, in’a space [X, O] (or [X, d]) is a mapping

p:[a b]—X,
where {a, b] is a closed interval in R. If p(a) = P and p(b)= Q, thenp is a
path from P to Q. A set M C X is pathwise connected if for each two points

P, Q of M there is a path p: [a, b]—> M from P to Q (or from Q to P) If
M c X, and |p|=p({a, b)) C M, then p is a path in M.

Theorem 1. In a ropological space [ X, O), let G be a collection of pathwise
connected sets, with a point P in common. Then the union G* of the
elements of G is pathwise connected.

PROOF. Given Q € g, € G, R € gz € G, let p be a path in g, from Q to P,
and let ¢ be a path in g, from P to R. Then p and g fit together to give a
pathr,in g, U g C G*, from Q to R. O

Let M and N be sets, in topological spaces [X, €] and [Y, Q'] A
function f: M — N is a mapping if f is a mapping relative to the subspaces
[M, ©|M]and [N, O[N]}

Theorem 2. Pathwise connectivity is preserved by surjective mappings. That
is, if f M- N is a mapping, and M is pathwise connected, then so aiso is
N. )

PrROOF. Given P, Q € N, take P’, Q' € M such that f(P')= P and f(Q’)
=Q;and letp be a palh in M from P’ to Q'. Then f(p) is a path in N
from P t0 Q. m}

A complex K is connected if it is not the union of two disjoint nonempty
complexes.



