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I. INTRODUCTION

Hall plates are thin semiconducting layers placed in a magnetic field.
Owing to the Lorentz force, the current density J and the electric field E are
no longer parallel vectors. This means that a current in a given direction
automatically generates a potential gradient in the perpendicular direction.
With suitable contacts (the so-called Hall contacts), a Hall voltage can then
be measured. In a first approximation one can state that the Hall voltage is
proportional to the applied magnetic field, the externally supplied current,
and the mobility of the charge carriers. Knowledge of the current and of the
Hall voltage yields the product uyB of the mobility y,, and the magnetic
field B. This indicates two major applications of Hall-effect components. If
the mobility is known, magnetic field strengths can be measured. On the
other hand, if the magnetic field is known, the mobility can be calculated. The
latter is mainly used for the investigation of semiconductors because mobility
is a fundamental material parameter.

A first series of applications is based on the measurement or detection of
magnetic fields. Measurements of the magnetic fields in particle accelerators
have been carried out with Hall probes provided with a special geometry in
order to ensure a linear characteristic (Haeusler and Lippmann, 1968).
Accuracies better than 0.1% have been realized. For alternating magnetic
ficlds. Hall plates can be used at frequencies up to + 10,000 Hz (Bonfig and
Karamalikis, 1972a,b). For higher frequencies emf measurements are recom-
mended to measure magnetic fields. The Hall probe can also be used to detect
the presence of a magnetic field. This phenomenon is used in some types of
push buttons. On each button a small permanent magnet is provided, and
the pushing is sensed by a Hall plate. At this writing Hall plates combined
with additional electronic circuitry are available in integrated-circuit form.
A Japanese company has produced a cassette recorder in which a Hall probe
reads the magnetic tape. The principal advantage here is that dc signals can
be read directly from a tape, whereas classical reading heads generate signals
proportional to the magnetic flux rate d¢/dr. Magretic bubble memories
have also been fitted out with Hall-effect readers (Thompson et al., 1975).

A survey of Hall-effect applications can be found in an article written by
Bulman (1966) that mentions microwave-power measurements, the use of
Hall probes as gyrators, insulators, function generators, ampere meters, etc.
Even a brushless dc motor has been constructed using the Hall effect (Kobus
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and Quichaud, 1970). Finally, Hall plates can also be applied as transducers
for mechanical displacements (IDavidson and Gourlay, 1966; Nalecz and
Warsza, 1966).

A second series of applications, to which this article is mainly devoted,
involves the measurement of mobilities. A Hall measurement carried out in a
known magnetic field yields the value of ;. This constant is an important -
parameter for investigating the quality of semiconducting materials.
Combined with the resistivity, it also enables us to calculate the carrier
concentration. Knowledge of these data is necessary for the construction of
components such as diodes, solar cells, and transistors starting from a
semiconducting slice.

The present article describes the Hall effect and its mathematical
representation. The well-known Van Der Pauw method for Hall-mobility
measurements is then discussed. The influence of the geometry on the Hall
voltage 1s pointed out using physical considerations. This explains why the
potential distribution ir a Hall plate should be known in order to evaluate
the so-called geometry correction. Then several techniques for potential
calculations in Hall plates, such as conformal mapping, finite differences,
and the boundary-element method, are outlined and compared.

II. FUNDAMENTAL EQUATIONS FOR A HALL-PLATE MEDIU™

A. General Equations for a Semiconductor

The fundamental equations for an n-type semiconductor (assuming low
injection) are the following:

(@njdty — ¢ ' V-J, = (n/ét) e, — [(p = po)iT,]
(@p/ot) +q ' V-3, = (p/dyen — [(p — po)iT,]
(substitute [(n — nyj 7, ] for a p-type layer);
3, = ngu,E + 4D, Vn, I, = pqu,E ~ qD, Vp (2)
V-E= -V =(q/¢,6)(p — n + Ny -- N,) (3)

where n is the electron concentration, p is the hole concentration, J, is the
electron current density, J, is the hole current density, J = J, + J, is the
total current density, N, xs the donor concentration, N, is the acceptor
concentration, E is the electric field, ¢ is the electric poential, u, = gD,/kT
is the electron mobility, g, = ¢D,/kT is the hole mobility, T, is the electron
relaxation time, 7, is the hole relaxation time, ny, is the equilibrium electron
concentration (in the p layer), p, is the equilibrium hole concentration

(1)

8550127
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(in the nlayer), ¢ is the dielectric constant, and (8/0t),., is the generation rate
(e.g., due to incident light). Equations (1)-(3) are nonlinear for the unknowns
n, p, and ¢; however, for Hall generators several reasonable assumptions can
be advanced so that the final problem becomes linear.

B. Approximations for a Thin Semiconducting Layer

For thin-film semiconducting layers with contacts sufficiently distant
from each other (order of magnitude in millimeters), one usually assumes
that the layer is sufficiently doped to ensure that the contribution of the
minority carriers becomes negligible. We shall work later with an n-type
semiconductor; however, the same treatment can be carried out for a p-type
semiconductor.

One also assumes that no space charges are built up in the conductor. It
can be shown that an occasional space charge only has an influence over a
distance comparable to the Debye length. For an n-type layer, the Debye
length is given by (Many et al., 1965)

Ly = [(egek T)/quD)]UZ 4

Normally, L, varies around 100--1000 A, so that a space charge can only be
felt over a distance much smaller than the distance between the electrodes.
Practically, space charges can only be realized at junctions or nonohmic
contacts. Because Hall generators are provided with ohmic contacts, the
space charge is zero everywhere. Hence the right-hand member of (3) should
vanish; for an n-type material this gives rise to '

n= Np and pP < n : (5)

The Poisson equation (3) is then reduced to the simpler Laplace equation
—V-E=Vigp=0 6)

From Egq. (5), it also follows that Vn should be zero. This means that the
current density J, only consists of the drift component qu,nE. The hole

current J, can be put at zero because both p and Vp are negligible. One
obtains for the current density

J=2J,= Npgu,E = gE 7

A thin semiconducting layer can be seen stimply as a sheet with a constant
conductivity . |

For sufficiently high doping concentrations Np, the minority-carrier
concentration p can be put equal to its equilibrium value p,, hence p — p, =
0. In the time-iridependent case, Eq. (1) reduces to

V-I=V:J =0 ‘ (8)
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if we suppose that the generation term (6n/dt),,, vanishes, which will be the
case if the layer is not illuminated or irradiated.

Equations (6) and (8) constitute the fundamental equations for a semi-
conducting layer, J and E being related by Eq. (7). From these equations, the
boundary conditions can easily be deduced. At a metallic contact the poten-
tial ¢ should be equal to the applied voltage. At a free boundary the current
density must be tangential: ‘ :

Jou, =0 (9)
where u, is the normal unit vector. Owing to Eq. (7), the boundary condition
(9} 1s equivalent to ' ‘

Vo u =0 (10)

The potential problem in a thin semiconducting laver is reduced to the
solution of the Laplace equation in a giver geometry, ¢ or V¢ -u, being
known on each point along the boundary. This is a classical potential
problem with mixed boundary conditions. '

C. Constitutive Relations with an Externally Applied Magnetic Field

~ The fundamental equations (1) and (2) are still valid in the presence of an
externally applied magnetic field. Only the constitutive relations (2) have to
be extended in the following way (Smith et al., 1967; Madelung, 1970):

Jni= E [”‘I.“ijEj = qu;(kT/q)(Onfox;)] (11)
j.

where the index i denotes the ith component in a rectangular coordinate
system. A similar expression can be written for the hole current density
Jp.i- The tensorial mobility 4i; in the presence of a magnetic field B is found

by the well-known Jones—Zener expansion, and it turns out that #;; has to
be replaced by '

i = W + Z.uijkBk (12)
k
Applying Egs. (11) and (12) on a flat n-type semiconductor layer, one obtains
(De Mey, 1975) ‘
J=0E + gD Vn — ouy(E x B) — quyD(Vn x B) (13)

Using the approximation (5), as has also been done in the foregoing section,
the diffusion components in Eq. (13} can be dropped, which yields
J = 6E — ouy(E x B) (14)

This relation is used later for potential calculations in Hall plates. It has also
been assumed that the semiconductor is isotropic, which explains why only
one uy coefficient remains in Eq. (14).
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Equation (14) is derived {from the Jones—Zener expansion (12) neglecting
terms of order uiB* that describe the physical magnetoresistivity. Hence
Eq. (14) can be inverted to

where p = 1/o denotes the resistivity. Equation (15) is also correct to terms
of order uyB.

The fundamental equations are still V-J = 0 and V x E = 0, but for a
flat semiconducting Hall plate in a uniform magnetic field B. one can show
the following: ’

VI=6V'E-ouyVExB =06V'E-0p(VXE'B=¢gV-E =0
VxJ=6VXE—ouyVx(ExB)=~auy(B-VIE + ouy(V-E)B = 0

in which (B - V)E vanishes since B is directed perpendicular to the Hall plate,
whereas E is parallel to it. To solve the problem one can use either V x E =
V':E=0o0rVxJ=V-J=0; E can be derived from a potential ¢. For
reasons which are explained in Section 11,D, the current density J can also
be derived from a potential function  in the following way:

J=u, x Vy : (16)

where u_ is the unity vector directed perpendicular to the Hall plate. From
V x J = 0it can be easily proved that y also satisfies the Laplace equation.

D. Boundary Conditions with an Externally Applied Magnetic Field

Let us start with the electrostatic potential ¢. At a metallic contact ¢ is
equal to the applied contact voltage. At a free boundary, the current density
should be tangential:

J.uﬂ = UE'un - UHHBE-HI = (J (-17)

Qor
V(p.“n = NHB Vd‘”u[ (18)

where w, = u_ x u_ is the unit tangential vector along the boundary (Fig. 1).
It should be noted that at a free boundary in a Hall plate the electric field can
show a nonvanishing normal component.

For a p-type semiconductor, the same calculations can be carried out. A
minus sign will then appear in the right-hand member of Eq. (18).

For Hall plates the current but not the potential through a contact is
usually given. It is then easier to introduce the current potential defined by
Eq. (16). At a metallic contact E should be perpendicular, or the tangential
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11
A/ B/
e = oX:]
p=pg=-1 w=0
vg.:cu.nf;JHEV‘P'J' =0 @ LTZ
[} D}
e Uy

A B
I

FiG. 1. Hall-plate configuration for outlining the stream potential.

component E-|ul must vanish. With Eq. (14) this gives rise to
cEv,=J-u + yy(J x B)ru =0 (19}
or
Vy-u, + yyBVy-u, =0 (20)

At a free boundary, J must be tangential, and due to Eq. (16)  must be a
constant (Fig. 1).

At BB’ the boundary value can be taken y = (). At the opposite side 44",
the value ¥, can be found from the known current [ injected through the
contacts:

I = — J‘B’J-un dl = j Vipewdl = y(B') — y(A')= —y, (21)

A’ A

A similar treatment can be performed if more than two contacts are involved.

111. THE VAN DER PAUuw METHOD

Van Der Pauw (1958) has presented an ingenious method for carrying out
resistivity and Hall-mobility measurements on thin layers with arbitrary
shape. In this article we shall restrict ourselves to Hall-mobility measure-
ments. It should be noted that Van Der Pauw’s theory is only valid if the
following four conditions are fulfilled:

(1) The layer must be perfectly flat

(2) The four contacts must be point shaped and placed along the
boundary



8 GILBERT DE MEY

(3) The layer must be homogeneous
{4) The geometry must be that of a singly connected domain

Only the second condition (point-shaped contacts) is difficult to meet. This
article is therefore mainly devoted to the influence of finite contacts on
Hall-mobility measurements.

In order to determine the mobility uy, a current I is fed through two
opposite contacts 4 and C (Fig. 2). The voltage across the two other contacts
B and D 1s then measured with and without the magnetic field B. The differ-
ence gives us the so-called Hall voltage. If the magnetic field B = 0, the
voltage drop ¥, between the contacts B and D turns out to be

B B
V1=J E-drzp( Jdr (22}
D ) >
When the magnetic field B is applied, one finds a voltage V, between Band D
given by
B B B
I-"'2=f E-dr=p( J-dr+p,uHJ (J x B)-dr (23)
D Jo D
Because the contacts are assumed to be point shaped, the boundary con-
dition J-u, = 0 holds along the entire boundary. Since the basic equations
and boundary conditions for J are unaltered by the magnetic field, one
concludes that the current density field J remains unchanged. The J vector in
Eq. (22) is thus the same as in Eq. (23). The Hall volage is then found to be
"B

Va=Vy— ¥, = puHJ (@ x B)-dr 24)
D

with B = Bu,(u, directed perpendicular to the Hall plate):
Vi = —puB(1/d) (25)

FiG. 2. Hall generator of arbitrary shape placed in a magnetic field B.
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where d represents the thickness of the layer. Equation (25) enables us to
determine the mobility uy by measuring the Hall voltage provided that
p, B, I, and d are known.

1V. INFLUENCE OF THE (GEOMETRY ON
HALL-MOBILITY MEASUREMENTS

Equation (25) of Van Der Pauw is only valid if the contacts are point
shaped. Actually, Hall generators always show finite contacts, and this will
alter the Hall voltage in a still unknown way. It is shown further on in this
article that the so-calied geometry correction can be calculated provided
that the potential problem in a Hall plate is solved.

At this stage it is necessary to emphasize that there are two different kinds
of size effects in semiconductor components. The first (and best known)
effect is of a purely physical nature. Consider a semiconductor slice that is
very thin, in which the mean free path of the charge carriers can become
comparable to the thickness. One can easily understand that the mobility
will then depend upon the size of the sample (Ghosh, 1961). But in our case
the geometry (i.e., finite contacts) has no physical influence on the mobility
but will affect the measured Hall voltage. This second kind of size effect is of
a purely metrological nature. )

We shall now review Section III for the case of finite contacts on a Hall
plate. Equations (22) and (23) are still valid; however, as J -u, = 0 no longer
holds along the entire boundary, the current field J will change in the presence
of a magnetic field. It is then necessary to replace J by J + AJ in Eq. (23),
where AJ is the change in the current field caused by the magnetic field B.
The Hall voltage V), is then found to be

B
Vu=V, -V, = pj AJ -dr — puyBil/d) C(26)
D
The absolute error Ay, introduced by neglecting the influence of the finite
contacts is then

B
Apy = (d/BI) f AJ - dr 27)
D

The problem is now to develop a geometry for which the correction (27) is as
small as possible in spite of the finiteness of the contacts. One has to find an
integration path from D to B in an area where AJ ~ 0. This can be done if
contacts are placed at the ends of rectangular strips (Fig. 3). From field



