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PREFACE

The relationship between the classical theory of compact operators in Banach
or Hilbert spaces and the study of boundary-value problems for elliptic
differential equations has been a symbiotic one, each having a profound effect
on the other. In the L? theory of elliptic differential equations with smooth
coefficients and on bounded domains in R", the problem of eigenfunction
expansions rests upon the fact that there is a naturally occurring operator with
a compact self-adjoint resolvent to which the abstract theory may be applied
with great success. On the other hand, the early work of Fredholm, Hilbert,
Riesz and Schmidt, for example, was stimulated by the needs of problems in
integral and differential equations. The theory of compact self-adjoint
operators in Hilbert space is particularly rich, but when one drops the self-
adjointness substantial difficulties appear; the eigenvalues (if any) may be non-
real, and, what is very important from the point of view of applications, there is
no Max-Min Principle of proven usefulness for the eigenvalues; furthermore
the question of whether the eigenfunctions form a basis for.the underlying
Hilbert space is then - much more complex. When we consider compact linear
operators acting in a Banach space, as is often necessary in connection with
non-linear problems for example, even greater difficulties appear: to obtain
information about eigenvalues indirect methods often have to be adopted. In
recent years much work has been done in this area, relating eigenvalues to more
geometrical quantities such as approximation numbers and entropy numbers.
This work is not limited to purely abstract theory: much effort has been put
into the estimation of such numbers for embedding maps between Sobolev
spaces, the group in the Soviet Union led by Birman and Solomjak being
especially active in this area. These embedding maps provide a natural link
between the abstract theory and problems in differential (and integral)
equations. Boundary-value problems for elliptic differential equations on
unbounded domains or with singular coefficients necessitate the study of non-
compact operators. In such cases the spectrum does not consist wholly of
eigenvalues but also has a non-trivial component called the essential spectrum.
In the literature there are many different ways of looking at the essential
spectrum but whichever way is followed a study of Fredholm and semi-
Fredholm operators is required. A notable result in this area is that due to
Nussbaum and (independently) Lebow and Schechter: the radius of the
essential spectrum is the same for all the commonly used definitions of essential
spectrum. This brings in the notion of the measure of non-compactness of an
operator, which is itself related to the entropy numbers mentioned earlier.
In order to apply the abstract theory to boundary-value problems for elliptic
differential equations the first task is to determine an appropriate function
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space and an operator which is a natural realization of the problem. For linear
elliptic problems the natural setting is an L2 space and in this book we
concentrate on the L? theory for general second order elliptic equations with
either Dirichlet or Neumann boundary conditions.

Let

n n a
_Z_: Di(?i/Dj¢)+ Z b,D;¢ +q¢, D;:= 5_xt’
= = j

in an open set Q in R®, with n > 1, and set
091= [ (£ ape0i+ 56005 +000)

for ¢ and ¢ in C® (R) or Co (R™), the choice depending on the boundary
conditions under consideration. If the numerical range of ¢, namely the set

e = {‘[¢.¢]2ja 61> = l},

lies in a sector in the complex plane with angle less than i, one can invoke the
theory of sesquilinear forms to obtain an operator T whose spectrum lies
within the aforementioned sector which describes the boundary-value
problem associated with  in a weak sense. If ©(¢) does not lie in a sector other
techniques have to be found. In this case we can make use of the powerful
methods which have been developed to tackle the problem of determining
sufficiency conditions for the operator T, defined by} formally symmetric t on
C3 (£2) to have a unique self-adjoint extension in L?(£2), a problem which has
attracted a great deal of attention over the years, particularly because of its
importance in quantum mechasics. An important example is Kato’s distri-
butional inequality which makes it possible to work with coefficients having
minimal local requirements. Once the operator has been obtained, the next
step is to analyse its spectrum. For non-self-adjoint operators the location of
the various essential spectra is often as much as one can realistically hope for in
the absence of the powerful tools available when the operators are self-adjoint,
notably the Spectral Theorem and Max—Min Principle. Perturbation methods
are effective in determining the dependence of the essential spectra on the
coefficients of 7, the effect of these methods being to reduce the problem to one
involving a simgler differential expression. The geometrical properties of €
then become prominent and the properties of the embedding maps between
Sobolev spaces which occur naturally achieve a special significance. In this the
notion of capacity has a central role, a fact highlighted in the work of
Molcanov, Maz’ja and others in the Soviet Union. To obtain information
about the cigenvalues one usually has to resort to the indirect methods
developed in the abstract theory. For instance, knowledge of the singular
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numbers of T, ie. the eigenvalues of the non-negative self-adjoint operator |T},
provides information about the [? class of the eigenvalues of T.

Our main objective in this book is to present some of the results which have
been obtained during the last decade or so in connection with the problems
described in the previous paragraphs. On the abstract side we deal with
operators in Banach spaces whenever possible, especially as some of the most
notable achievements can only be appreciated in this context. We specialize to
Hilbert spaces in the work on elliptic differential equations reported on, chiefly
because it is in the framework of the L? theory that most of the relevant recent
advances have been made. Furthermore, for the L? theory with p # 2 we have
nothing substantial to add to what is contained in the books by Goldberg [1]
and Schechter [2]. Despite this, when we prepare tools like the embedding
theorems and results on capacity we work with L? spaces if this can be done
without much additional strain. In an area as broad as this, one is forced to be
selective in one’s choice of topics and, inevitably, important omissions have to
be made. We say very little about eigenfunctions and expansion theorems, for
instance, but we have a clear conscience about this because what we could say is
adequately covered in the book by Gohberg and Krein [1]. In any case, our
book is already long enough.

The book is primarily designed for the mathematician although we hope
that other scientists will also find something of interest to them here and we
have kept this goal in mind while writing it. The language of the book is
functional analysis and a sound basic knowledge of Banach and Hilbert space
theory is needed. Some familiarity with the Lebesgue integral and the elements
of the theory of differential equations would be helpful but only the barest
essentials are assumed. We have dispensed with a chapter of preliminaries in -
favour of reminders in the body of the text and where necessary we refer to
other books for background material.

Most of the abstract theory is developed in the first four chapters. Chapters
and II deal with bounded linear operators in Banach spaces, the main themes
being the essential spectra and the properties of various numbers
like entropy numbers and approximation numbers associated with the
bounded linear operators. In Chapter I1I closed linear operators are studied,
particular emphasis being given to the behaviour of their deficiency indices and
Fredholm index when the operators are extended or are perturbed. We
illustrate the abstract results with a comprehensive account of general second-
order quasi-differential equations and this covers the Weyl limit-point, limit-
circle theory for formally symmetric equations and also its extensions by Sims
and Zhikhar to formally J-self-adjoint equations. Sesquilinear forms in
Hilbert spaces are the subject of Chapter IV. The basic results are the Lax-
Milgram Theorem for bounded coercive forms and the representation
theorems for sectorial forms. Also there are perturbation results for the forms
of general self-adjoint and m-sectorial operators which have an important role
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to play later in the location of the essential spectra of differential operators.
Another result which will be important later is Stampacchia’s generalization of
the Lax—Milgram theorem to variational inequalities.

In Chapter V we give a treatment of Sobolev spaces. Apart from their
intrinsic interest these spaces are an indispensible tool for any work on partial
differential equations and much of what is done in subsequent chapters hinges
on Chapter V. Furthermore Sobolev spaces are an ideal testing ground for
examining some of the abstract notions discussed in the early chapters and
accordingly we devote some space to the determination of the measures of non-
compactness and the approximation numbers of embedding maps between
Sobolev spaces.

The remaining chapters deal mainly with second-order elliptic differential
operators, The weak or generalized forms of the Dirichlet and Neumann
boundary-value problems are defined and studied in Chapter V1. The material
in Chapter VI is mainly relevant to bounded open sets © in R" when the
underlying operators have compact resolvents in L2(£2), in which case the
spectra consist wholly of eigenvalues. Also included is Stampacchia’s weak
maximum principle and this leads naturally to the notion of capacity. Second-
order operators on arbitrary open sets £ are the theme of Chapter VII. Under
weak conditions on the coefficients of the differential expression we describe
three different techniques for determining the Dirichlet and Neumann
operators. The first applies the First Representation Theorem to sectorial
forms, the second is one developed by Kato based on his celebrated
distributional inequality and the third has its roots in the work of Levinson
and Titchmarsh on the essential self-adjointness of the operator defined by
—A+q on C§ (L) when q is'real. Schrodinger operators are an important
special case, especially of the third class of operators discussed, and some of
the results obtained for higbly oscillatory potentials are anticipated by the
quantum-mechanical interpretation of the problem.

The central result of Chapter VIII is Molcanov’s necessary and sufficient
condition for the self-adjoint realization of —A +¢ (q real and bounded
below) to have a wholly discrete spectrum. This necessitates the study of
capacity and in the wake of the main result we also obtain necessary and
sufficient conditions for the embedding Wy’ ?(£2) - L?(£) to be compact and
for important integral inequalities (like the Poincaré inequality) to hold.

. In Chapter IX we study the essential spectra of closed operators in Banach and
Hilbert spaces and then use the abstract theory to locate the various essential
spectra of constant coefficient differential operators in L?(R") and L?(0, ). In
the case when the coefficients are not constant a useful tool for ordinary
differential operators is the so-called Decomposition Principle which implies
that the essential spectra depend only on the behaviour of the coefficients at
infinity. For partial differential operators a Decomposition Principle is
obtained in Chapter X as a perturbation result and this is then used to locate
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. the essential spectra of the general second-order operators in L* () discussed
in Chapter VII. We analyse the dependence of the essential spectra on £1in two
different ways. In the first the results are described in terms of capacity and
sequences of cubes which intersect Q. The second involves the use of a mean
distance function m(x), which is a measure of the distance of x to the boundary
of Q, and an integral inequality obtained by E. B. Davies. This enables us to
give estimates for the first eigenvalue and the least point of the essential
spectrum of the Dirichlet problem for — A on Q.

The last two chapters are concerned with the eigenvalues and singular values
of the Dirichlet and Neumann problems for — A + 4. The case of g real, and
hence self-adjoint operators, is treated in Chapter XI, the main result beix?g a
global estimate for N(1), the number of eigenvalues less than + when 4 is below
the essential spectrum. From this estimate asymptotic formulae are derived for
N (4) when the spectrum is discrete and A — oc and when the negative spectrum
is discrete and 4 —0—. We also obtain the Cwikel-Lieb-Rosenblyjum
estimate for N(4) when g e L"2 (R") with n > 3,and include the elegant Li-Yau
proof of the latter result. In Chapter XII g is complex, and global and
asymptotic estimates are obtained for M (4), the number of singular values less
than A. From these estimates the i’-class of the singular numbers and
eigenvalues are derived.

Chapters are divided into sections, and some sections into subsections. For
example, §1.3.2 means subsection 2 of section 3 of Chapter I; it is simply written
§3.2 when referred to within the same chapter and §2 when referred to within
the same section. Theorems, Corollaries, Lemmas, Propositions, and Remarks
are numbered consecutively within each section. Theorem 1.2.3 means
Theorem 2.3 in §2 of Chapter I and is referred to simply as Theorem 2.3 within
the same chapter. Formulae are numbered consecutively within each section;
(1.2.3) means the third equation of §2 of Chapter I and is referred to as (2.3)
within the same chapter. The symbol B indicates the end of the statement of a
result and O indicates the end of a proof. ‘ '

There is also a glossary of terms and notation, a bibliography and an index.

We have made no systematic attempt to go into the complicated history of
the results presented here, but hope that the references provided will be helpful
to the reader interested in the background of the material.

It is a pleasure to acknowledge the help we have received from many
colleagues and in particular from Robin Dyer, Edward Fraenkel, and
Desmond Harris. We are especially indebted to Hans Triebel, who read the
whole manuscript and offered invaluable comments.

Brighton and D. E.
Cardiff W. D.
June 1986
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Basic notation

Dl T,
.

B(x, r): open ball in R", centre x and radius r.
C: complex plane; C, = {ze C:im z 2 0}; C*:n-dimensional complex space; R:
real line; R™: n-dimensional Euclidean space.

% =R"\{0}.
Diu = 0u/dx;; if a=(ay,...,a,) with «; non-negative integers, D
=0"u/dxs ... 0x> where |a| =a; + ... +a,.

£2: an open set in R*;, 2 is a domain if it js also connected.

o4 boundary of Q; &: closure of 2; Q°= R"\ Q.

2’ c < £ 2’ is a compact subset of Q.

dist (x, Q). distance from x to Q°.

N: positive integers; N, =M U {0}; Z: all integers.

f(t) <g(t)ast — a: there exist positive constants ¢, , c, such that ¢, < f(t)/g(¢)
< ¢, for |t—al (% 0) small enough, if aeR; and for large enough +1 if
g=1wm.

T'};: restriction of the operatox\ (or function) T to set G.

[t= maX(fo),f = —mm(f,O)

such space Y.
I*(1 < p < oo): complex sequence space with norm |(£;)ll, = (Z£;1?)*/? when

1 < p < 0 and [(¢))llo = sup |{;| when p = co.
: i
co: = {({)el™: lj‘x'n ¢ =0}

"

w,: volume of the unit ball in R", ic. 0, = ——— .
= Td+in)
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I
Linear operators in Banach spaces

Three main themes run through this chapter: compact linear operators,
measures of non-compactness, and Fredholm and semi-Fredholm maps. Each
topic is of considerable intrinsic interest; our object is not only to make this
apparent but also to establish connections between the themes so as to derive
results which will be of great interest later. One such result is a formula for the
radius r,(7') of the essential spectrum of a bounded linear map T.

The theory of compact linear operators acting in a Banach space has a
classical core which will be familiar to many, and in view of this we pass rather
quickly over it. Perhaps less well-known is the concept of the measure of non-
compactness of a set and of a map, a notion due to Kuratowski [1], who
introduced it in 1930 for subsets of a metric space. The idea lay more or less
dormant until 1955, when Darbo[ 1] showed how it could be used to obtain a
significant generalization of Schauder’s fixed-point theorem. Since that time,
substantial advances have been made both in the theory and in applications,
although the bulk of applications have been to ordinary rather than to partial
differential equations. We try to redress the balance later on in the book by use
of the formula for r, (T') in our discussion of the essential spectrum of various
partial differential operators. The interaction between measures of non-
compactness and semi-Fredholm maps is of crucial importance in the
derivation of this formula, and accordingly we devote some time to this
interplay.

1. Compact linear maps

All vector spaces which will be mentioned will be assumed to be over the
complex field, unless otherwise stated. The norm on a normed vector space X
will usually be denoted by |l«{l,, or by ||« | if no ambiguity is possible.
Given any Banach spaces X and Y, the vector space of all bounded linear
maps from X to Y will be denoted by #(X,Y), or by £ (X) if X =Y; with the
norm ||« || defined by || T'|| = sup{|| Tx||:}I x| < 1}, #(X,Y) is a Banach space.
It is natural to try to distinguish members of #(X,Y) which have particularly
good properties. Compact linear maps come into this category, since they have
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propertiés reminiscent of linear maps acting between finite-dimensional
spaces.

Definition 1.1. Let X andY be Banach spaces and let T: X — Y be linear. The
map T is said to be compact if, and only if, for any beunded subset B of X, the
closure T'(B) of T(B) is compact. [ ]

Evidently T'is compact if, and only if, given any bounded sequence (x,)in X,
the sequence (T'x, ) contains a convergent subsequence. Note also that if T is
compact it is continuous, since otherwise there would be a sequence (x,) in X
suchthat || x, || = 1forallneN,and || Tx, || - co asn — oo, which is impossible.

Examples. (i) 1f Te #(X,Y) and the dimension of the range #(T):= T(X) of
T,dim ®(T), is finite, then 7' must be compact, since if B is a bounded subset of
X then T(B) is closed and bounded, and hence compact.

(ii) Not every bounded linear map is compact: take X =Y = [2, for each
neN let ¢ be the element of I? with mth coordinate 5, (equal to 1 if m = n,
and 0 otherwise), and observe that the identity map of [? to itself is continuous
but not compact, because the sequence (™) has no convergent subsequence.

(iii) Let a,beR, b>a, J=[a,b], and suppose that k:J xJ—C is
continuous on J x J; define

b

(Kx) (s) = f k(s,t) x (t)dt
for all se J and for all x in the Banach space C(J) of all continuous complex-
valued functions on J (with norm ||« || given by || x|| = max {|x(s)|:seJ}).
Then K is a linear map of C(J) into itself, and in fact, K is compact. To see this,

set M =max {|k(s,t)|:s,teJ}; then | Kx|| < M(b— -a)|| x || for all xeC(J),

and so if Bisa bounded subset of C (J) then K (B)is bounded Moreover, for all
51,8, €J and any xeC(J),

I(Kx) (Sl)_ (Kx) (Sz) '2 =

b 2
f [k(sy, ) —k(sz, 1)] x () dt

b b
SJ 1k(sy, ) —k(sz, 8))? dt;f [x(¢)|* dt .

Thus given any ¢ > 0, there exists a § > 0such that | (Kx) (s,) — (Kx) (s;)| < ¢

Al Ix] <1 and [s; —s;] <6 (s1,5,€J). Hence {Kx:xeC(J), [x| <1} is
equicontinuous and bounded, and thus relatively compact, by the
Arzela-Ascoli Theorem (cf. Yosida [1, p. 85]).

Denote by X (X, Y) the family of all compact linear maps from X toY, and
put X (X) = X (X, X). The following proposition is a well-khown con-
sequence of the definition of compactness.
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Proposition 1.2. Let X,Y,Z be Banach spaces. Then X" (X,Y) is a closed linear
subspace of #(X,Y);if T, e B(X,Y)and T, e #(, Z) then T, T, is compact if
either T, or T, is compact. [
This proposition implies that & (X) is a closed two-sided ideal in the Banach
algebra 2 (X).
It has already been noted that if Te #(X, Y) is of finite rank, that is,
"dim #(T) < co,then Te ¥ (X,Y). In particular, # (X,Y) = X (X,Y)if either X
orY is finite-dimensional. The following result complements this, and throws
new light on Example (ii) above.

Theorem 1.3. Let X bea Banach space and suppose that the identity map of X
to itself is compact. Then dim X < oo. .

This follows directly from the following lemma.

Lemma 1.4. Let (X,) be a sequence of finite-dimensional linear subspaces of a
Banach space X such that for all neN, X, < X, and X, # X, ,. Then given
any neN with n > 2, there exists x,€ X,, with ||x,| = 1, such that |x,—xf > 1
for all xe X, . In particular, || x, — x, | > | when m < n; the sequence (x,)
has no convergent subsequences. ]

Proof. Lety,e X,\ X,-,. The function y — || y — y, || is positive and continu-
ous on X, _, and approaches infinity as || y]| = oo; hence it has a minimum, at
z,€X,_,, say, and

0 <lza=yall SN x+2—yall

for any xe X, _, . The point x,:= (y, — z,)/ | ¥» — Z, ]| then has all the required
properties. . g

A related result is the following.

Lemma 1.5 (Riesz’s Lemma). Let M be a proper, closed, linear subspace of a
normed vector space X. Then given any 0 € (0, 1), there is an element x,e X
such that || x,|| = 1 and dist (x,, M) > 6. [ ]

Proof. Let xe X\ M. Since M is closed, d:= dist (x, M) > 0. Thus given any
0 € (0, 1), there exists mye M such that || x—m,| < d/0. The element x,4:=
(x —myg)/|| x —my, || has all the properties needed. W]

Compactness of a linear map is preserved by the taking of the adjoint.
Before this result is given in a formal way, some remarks about notation are
desirable. Given any normed vector space X, by the adjoint space X* of X is
meant the set of all conjugate linear continuous functionals on X; that is, fe X *
if, and only if, f: X — C is continuous and f (ax + By) = &f (x)+ ff (y) for all
a,B€C and all x,y e X. Our choice of conjugate-linear functionals, rather than
the more common linear functionals, is dictated solely by the convenience
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.which will result later on in the book. With the usual definitions of addition
and multiplication by scalars the adjoint space X * becomes a Banach space
when given the norm ||« || defined by

1= sup {1(£, x)]: x| = 1},

where (f, x) is the value of f at x (often denoted by f(x) as above. Strictly
speaking, we should write (f, x),, but the subscript will be omitted if no
ambiguity is possible. The same omission will be made for inner products in a
Hilbert space.). Given any Te®(X,Y), the adjoint of T is the map
T*c B(Y*, X*) defined by (T* g, x) = (g, Tx) for all geY* and x € X; note
that (aS+ BT)* = aS*4 BT * for all «,feC and all S, Te#(X,Y). These
conventions about adjoints will apply even when the underlying spaces are
Hilbert spaces, and there will therefore be none of the usual awkwardness
about the distinction between Banach-space and Hilbert-space adjoints of a
map that has to be made when linear, rather than conjugate-linear, functionals
are used. Of course, many of the results to be given below would also hold had
X * been defined to be the space of all continuous linear functionals on X. Note
that the Riesz Representation Theorem (cf. Taylor[1, Theorem 4.81-C))
enables any Hilbert space H to be identified with H*; and that in view of this,
givenany Te #(H,, H,) (H, and H, being Hilbert spaces), T*c #(H,, H, ). If
H, = H; = H, then both Tand T* belong to 2 (H): the map 7 is said to be self-
adjoint if T = T*, '

Theorem 1.6. Let X and Y be Banach spaces and let T € #(X,Y). Then
TeX (X,Y)if, and only if, T*e ¥ (Y*, X *). ]

The well-known proof may be found in Yosida [1, p. 282].

The notion of the adjoint of a map T will also be needed when 7 is
unbounded. Thus let 2 (T) be a linear subspace of X which is dense in X (i.e.
2(T)=X)andlet T: 9 (T) Y be linear. Let 2 (T*) = {g €Y *: there exists
f€X* such that (f,x) = (g, Tx) for all xe 2 (T')}; the adjoint T* of T is the
map T* P (T*)— X* defined by T*g =, ie., (T*g,x) = (g,Tx) for all
x€ 2 (T)and all ge 2 (T*). Note that it is essential that 2 (T)be dense in X
for T'* to be well-defined. A more detailed discussion of self-adjoint maps in a
Hilbert space will be given in §111.4.

Next, the results of the Fredholm—Riesz-Schauder theory of compact linear
maps will be given; this theory extends in a most direct way the theory of linear
maps in finite-dimensional spaces. The complete picture follows from a series
of auxiliary results, a number of which are of interest in their own right.
Throughout the discussion X will stand Yor a non-trivial (that is # {0})
Banach space, I will be the identity map from X to X;and givenany Te & (X)
and any A€ C, we shall write T, for T— Al. The notions of the resolvent set and
the spectrum of a linear map will also be needed; these will be explained in
terms of a linear map S from a linear subspace 2 (8) of X to X. The resolvent



