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PREFACE

Applied mathematics has assumed increasing importance to the chemi-
cal engineer. The authors of current professional literature freely use
transform, vector, and finite-difference methods to attack s problem.
The practicing engineer is finding modern mathematical techniques a
valuable tool in the analysis of a variety of situations. Present trends in
the chemical and process industries involve increased emphasis on auto-
matic-contrel systems, high-speed machine computation, operational
analysis, and the like. These developments directly depend upon the
application of advanced mathematical procedures.

The purpose of this book is te consolidate the advanced methods of
mathematics into a form that can be applied readily by both the student
and the professional engineer. Emphasis is focused on the engineering
applications of mathematics. Considerable attention is given to the
problem of expressing a physical situation in mathematical language.
Problems drawn from the engineering literature are used to illustrate
the mathematical procedures. The material covered falls into three
broad categories: (1) the’ treatment and interpretation of engineering
data, (2) the analysis of situations involving only one independent
variable, and (3) the analysis of situations involving two or more inde-
pendent variables. ’

The mathematical background of the reader is presumed to be limited.
The text material begins with a discussion of the process of differentiation,
and the development of more advanced procedures follows in & step-by-
step manner. » '

The book may be used as either an undergraduate or a graduate text.
The material of Chaps. 1, 3, 4, and 5 can be handled readily by the
undergraduate and will provide the background needed for the assimila-
tion of the more advanced material in a subsequent study program.

The second edition represents an extensive revision of the original work.
Chapter 8 (The Laplace Transform), Chap. 9 (Analysis of Stagewise
Processes by the Calculus of Finite Differences), and Chap. 10 (The
Numerical Solution of Partial Differenti Equations) are completely new.
The remaining chapters have been rewrim)u, and new malerial has been

iti



iv PREFACE

added. Such topics as the statistics of small samples, analysis of var-
iance, factorial design of experiments, expansion in a series of orthogonal
functions, vector notation, and others have been included.

The decision to add new material and to omit material formerly
included has been difficult. The action taken has been based upon an
appraisal of trends both in engineering education and in the engineering
profession.

The authors are indebted to Professor Sir Ronald A. Fisher, Cambridge,
and to Oliver & Boyd, Ltd., Edinburgh and London, for permission to
reprint Table 2-1 from their book ‘Statistical Methods for Research
Workers’’; to Professor P. C. Mahalanobis, F.R.S., Calcutta, and to the
Indian Statistical Institute, Calcutta, for permission to reprint Table
2-4 from an article appearing in Sankhyd; to Professor G. W. Snedecor.
Ames, Towa, and to Collegiate Press, Inc., of Iowa State College, Ames,
for permission to reprint Table 2-5 from their book “Statistical Methods
Applied to Experiments in Agrieulture and Biology’’; to Professor R. V.
Churchill, Ann Arbor, Mich., and to McGraw-Hill Book Company, Inc.,
New York, for permission to reprint Table 8-1 from their book ‘‘ Modern
Operational Mathematics in Engineering.”” The constructive sugges-
tions and encouragement of the author’s professional colleagues are
gratefully acknowledged. In particular, the invaluable aid in the prepa-
ration of the second edition by the authors of the first edition, Professor
T. K. Sherwood and Dr. C. E. Reed, is sincerely appreciated.

Harorp S. MickLEY
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CHAPTER 1

TREATMENT OF ENGINEERING DATA

1-1. Introduction. The engineer constantly utilizes experimental data.
He tests theoretical predictions by comparison with experiment; he
analyzes process performance by examination of experimental results;
he makes critical decisions on the basis of his interpretation of experi-
mental measurements. Consequently, the ability to extract maximum
information from engineering data is important. This chapter discusses
severa) useful techniques for the treatment of experimental results.

1-2. Graphical Representation. Graphical methods have proved
invaluable in the analysis of the relatively complex processes with which
the chemical engineer deals. Much of the basic physical and chemical
data are best represented graphically, and graphical methods are intro-
duced in this way into the analytical treatment of the process.

One or more of the many types of graphical representations may be
employed for the following purposes: (1) as an aid in visualizing a process
or the meaning of a computation, (2) for the representation of quantitative
data or of a theoretical or empirical equation, (3) for the comparison of
experimental data with a theoretical or empirical expression, and (4)
as 8 means of computation.

The relation between two physical quantities p and z is commonly
obtained as a tabulation of values of p for a number of different values of
z. The relation between p and z is not easy to visualize by studying
the tabulated results and is best seen by plotting p vs. x. If the con-
ditions of the experiment are such that p is known to be a function of
z only, the functional relation will be indicated by the fact that the
points may be represented graphically by a smooth curve, and deviations
of the points from a smooth curve indicate the reliability of the data.
1f p is a function of two variables z and y, a series of results of p in terms
of z may be obtained for each of several values of y. When plotted, the
data will be represented by a family of curves, each curve representing
the relation between p and z for a definite constant value of y. If
another variable z is involved, we may have separate graphs for constant
values of z, each showing a family of curves of p vs. 2. - Extension of this
method of representing data to relate more than four quantities is

1



2 APPLIED MATHEMATICS IN CHEMICAL ENGINEERING [CHAP. 1

impractical unless general relations between two or more of the variables
can be obtained. This point is further discussed below.

The ordinary graphical representation of experimental results is usually
the first step in finding an empirical equation to represent the data, as
described in Sec. 1-5. Even when the empirical equation is to be obtained
directly from the tabulated data by a numerical process, it is usually
desirable to plot the points in order that the nature of the function may be
visualized. Where the calculated relation between two quantities is
dependent wholly on sound theoretical or empirical equations, it may be
desirable to plot the resulting function in order to visualize its properties.

The use to which the graph is to be adapted should be kept in mind in
preparing a graphical representation either of data or of an equation.
The coordinates should be chosen in such a way that the accuracy of
reading the graph will be good for all ranges of the variables involved,
with the resulting curve falling with a slope of roughly +1 on a square
diagram. The scale should be arranged so that interpolation is readily
accomplished.

Consider the relation

E=38 (=Y + 1 -9(T ’
= 5 |exp 5) 7 g exp 3) T
+omep|-25(T) ]+ -
25 *P 2) " (-
which is obtained as the analytical solution to the problem of the un-
10

08 \
0.6

.
RN

<
0.2 \

0

0 02 04 06 08 10 12 14 16
T

Fie. 1-1. Linear-scale plot of E-r function.

steady-state cooling of an infinite solid slab. Values of E may be
obtained directly for any value of 7, but a tedious trial-and-error calcula-
tion is necessary if 7 is to be obtained for a given value of E. By means

of a graph of E vs. 7, E may be read in terms of r or r in terms of
with equal facility.
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Figure 1-1 shows E plotted vs. » on ordinary rectangular coordinate
paper. It is apparent that r cannot be read accurately for large values of
E, nor can E be obtained accurately at large values of 7. When r is
large, the first term of the series is the only one of significance, and the
series reduces to an exponential relation, suggesting a graph of log £ vs. 7

10 \

08

0.6 N

\\
04 <
E \

0.2 <

0.1 P

0.08 \
0.06 AN
0.04

0.2 04 0.6 08 1.0 12
r
Fia. 1-2. Semilog plot of E-r function.
10
\
08 P
[~
I~ A
06 ]
04

E
<

N\

0.1
AN

008 AN

0.06

004

0 0.04 008 0.12 0.4 08 1.2
T

Fi1a. 1-3. Extended abscissa scale.

or a graph of E vs. r on semilogarithmic coordinate paper. Figure 1-2
is such a graph of ¥ vs. r, with a logarithmic ordinate scale and a linear
abscissa scale. It is apparent that this method of plotting represents a
considerable improvement, as the graph may be read with good accuracy
(in view of its size) except for small values of . Figure 1-3 represents
a further modification of the same graph. The logarithmic scale from
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E = 0.6 to E = 1.0 has been doubled and a larger abscissa scale used in
this region. The result is & combination of two graphs similar to Fig. 1-2,
with different ordinate and abscissa scales for values of E greater and
less than 0.6. The two graphs are fitted together, giving a curve with
two branches. The accuracy in reading values from branch A is con-
siderably improved, although the accuracy at large values of 7 is less
than in Fig. 1-2.

1-8. Elimination of Trial and Error. Experimental data or correla-
tions of experimental data should be plotted, if possible, so that the use
of the graph should eliminate trial-and-error calculations. This is not

0.04
0.02 5\
f =T |~ Line for small
001 smooth tubes
0.008
0.006

1,000 2000 4,000 ll(,) 000 20,000
Reynolds number Re = 73

F16. 1-4. Friction-factor-Reynolds-number plot.

always possible for all uses to which the graph may be adapted, but
alternative methods of plotting may be used to advantage in employing
the data in different ways. The familiar friction-factor graph for fluids
in round pipes represents a correlation of a large amount of data, usually
plotted as f vs. DVp/u with logarithmic ordinate and abscissa scales
(Fig. 1-4). This is used in connection with the Fanning equation

2fLV?

H = oD (1-2)
where H = head lost because of friction in length L of pipe having
diameter D
g. = ‘‘consistency factor”

V' = superficial fluid velocity

p = fluid density

p = fluid viscosity

J = dimensionless friction factor
When all quantities are known except the head loss H , which is to be
calculated, the group Rel;s first obtained, f is read from the plot, and
H is calculated directly from the equation. If it is desired to calculate
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the necessary pipe diameter for a specified flow and head, the problem
becomes one of trial and error, since the Reynolds group is not immedi-
ately obtainable. Similarly, trial and error are involved in the calcula-
tion of the flow to be expected with a specified head, fluid, and pipe
size. It is clear that the method of plotting is inconvenient for two
of the three usual calculations in connection with which the correlation
is of value. The following procedure will determine the manner in
which the graphed data should be replotted in order to eliminate trial
and error in a specific type of calculation.

Consider the case in which it is desired to calculate the pipe diameter
corresponding to a specified flow and head. What is needed is a plot
prepared by using Fig. 1-4, in which the abscissa contains only known
quantities and the ordinate the unknown (and any necessary known)
parameters.

Let Q represent the given volume rate of flow. Then the relations
which are available are Eq. (1-2),

Q= g D (1-3)
Re = 2V (14)
"

and the relation between f and Re given by Fig. 1-4. The “unknowns”
are four in number: D, V, Re, and f. There are four ‘‘equations” (one
of them graphical) and four unknowns, and so a solution is possible.
The algebraical relations are used to eliminate those unknowns which
do not appear directly in the graph, in this case, D and V. Combina-
tion of (1-3) and (1-4) gives

2,2
V= L(fﬂ_g_lf (1-5)
_ 4Qp
D= ®Re (1-6)

Substitution of (1-5) and (1-6) in (1-2) gives

re v/7 = ()" (2)" a7

) B

The right-hand side of Eq. (1-7) contains known quantities only. Fur-
thermore, Fig. 1-4 may be used to prepare a plot of Re v/f vs. either f
or Re. With the aid of such a plot, Re or f may be obtained, without
trial and error, from the specified data. Equations (1-5) to (1-7) may
then be used to calculate the remaining variables.
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A graph of Re v/f vs. Re is shown in Fig. 1-5. Since Re appears in
both variables plotted, the calculated value of D is quite insensitive to f.
This is true because of the relation between the variables and not because
of the method of plotting, although it will be shown below that graphical
representations of data should not, in general, involve the same variable
in both ordinate and abscissa.

10,000
7

6,000 /
4,000

2,000
5 /
& /
1,000

600 s
400 I->

1,000 2,000 4,000v 10,000 20,b00 40,000
tVte==D7c

Fia. 1-5, Mogﬁed friction-factor plot.
e

‘Following the same principle of eliminating the variable to be deter-
mined from one of the quantities plotted, it may be shown that the third
calculation to determine the flow for a specified head and pipe size is
easily carried out, using a plot of Re /7 va. Re or f.

1-4. Misleading Methods of Correl 1. Any correlation of experi-
mental data based on a graph in%

hiel' the same variable appears‘in
both ordinate and abscissa should be viewéd with suspicion. When one
of the less important variables is plsced in both quantities plotted, it is
possible to extend the scale and make the correlation appear to be much
better than it really is. Such correlations are occasionally presented
in the literature. The investigator, trying various methods of plotting
his results, hits upon a method of plotting that brings his data together
and presents a correlation that is unintentionally deceiving as to its
generality. Such methods of plotting may be arrived at by fairly
sound analysis of the physical problem involved and may be defended
as being rational, although a poor test of the data. A rather subtle
example of this process arises in the study of heat transfer to boiling
liquids. The surface coefficients obtained are large and are relatively
difficult to reproduce, so that the problem of correlafing such data is
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difficult. Suppose a set of data to have been obtained, covering a range
of temperature differences between steam and boiling water in an evap-
orator relying on liquid circulation by natural convection. The. experi-
menter is confronted with a series of values of 4 and At, all the results
having been obtained with a constant liquid composition and beiling -

e

600

i

a0} -~
h /
o0 ,

100

1,000 2000 4,000

10,000 20,000

2o = Btu/(hr) (t2)
F1a. 1-6. Correlation of data on heat transfer.

temperature. . He reasons that the surface coefficient of heat transfer is
dependent on the effective thickness of some type of surface film and
that this in turn should be a function of the degree of agitation of the

liquid in the evaporator: Theagitation
should be a function of the rate of boil-
ing and the rate of heat transfer, in
turn. Hereaches the conclusion, there-
fore, that h should depend on the heat
‘““current density” ¢/A6 and prepares
a graph to test this conclusion. The
result is shown in Fig. 1-6, which indi-
cates a better correlation than is often
- obtained for this case of heat transfer.

It should be noted, however, that
the abscissa q/A6 is the calculated
product of & and At, and the graph,
therefore, involves %4 in both ordinate
and abscissa. If A is plotted vs. At
the result indicates a poor correlation
of the same data, as shown by Fig. 1-7.

aoo‘
600 |—— -

400

200

100

4 6 810 20 30 40
At

Fi1a. 1-7. Test of boiling heat-trans-
fer data. :

Fundamentally, the two graphs,

Figs. 1-6 and 1-7, are equivalent, but the former appears to present a
better correlation of the data because large variations in h overshadow
small deviations of Af. It may be argued that the quantities varied
were the rate of heat flow and the steam temperature and that these
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should be the variables plotted, but general correlations on such a basis
would be inconvenient, and the graph of h vs. At is an excellent test of the
experimental data.

From the example quoted above, it follows that if one variable plotted
is divided by some function of the other, a graph of the resulting ratio
may present a more severe test of the data. For example, fluid-flow data

are frequently plotted as

_ x*Hg.D®
7= "gprg
4Qp
V8. = ;':*I)
If the experimental variables are H and D, with L, @, u, and p held
constant, the graph of f vs. Re is really a graph of HD5 vs. 1/D. If the
measured value of D is 10 per cent too great but H is correct, the abscissa
will be 9 per cent too small, and the ordinate will be 61 per cent high.
The general slope of the curve is negative, and the experimental point
will be considerably off. In this case, the method of plotting represents
a severe test of the data. If the experimental variables are H and p, all
others being held constant, then the usual friction-factor graph repre-
sents a direct plotting of the variables studied. When a number of
variables are to be related, it is seldom possible to find a single method of
plotting that will represent an equally critical test of the experimental
data relating various pairs of the variables.

1-5. Empirical Equations. The representation of experimental data
by means of algebraic equations is a practical necessity in engineering,
Not only are such equations shorthand expressions for a large amount of
dats, but they serve as the necessary mathematical expressions by which
the empirical information may be treated in subsequent mathematical
operations. For the first use, the equation must be truly representative
of the experimental data; for the second, it should be simple in form.

The form of the equation is frequently suggested by a theoretical
analysis, and it is necessary only to evaluate certain constants. If the
form is not known, dimensional analysis may be helpful in suggesting
grouping of variables, and obvious practical considerations must not be
overlooked. It is often evident that the curve must go through the
origin or some fixed point or perhaps become asymptotic to some definite
value of one variable. The form of the empirical equation chosen
must be consistent with such considerations. The general problem of
fitting data by an empirical equation may be divided into two parts: the
determination of a suitable form of equation and the evaluation of the
constants. The determination of the form proceeds largely by trial,
although certain rules may be laid down as practical aids. If the data
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can be plotted in such a way as to give a straight line, either by choice of
graph paper or by a proper arrangement of variables for plotting, the
linear form leads immediately to an expression relating the original
variables. Likely forms are tested by plotting in such a manner as to
make the expression linear, and the constants are evaluated from the
straight line obtained.

The experimental data may be assumed to be given in the form of a
table of values of & variable y for corresponding values of another variable
z. For example, let it be desired to represent the following data by means
of an empirical equation:

z , 0.2 ’ 0.5 ] 1.0 ! 2.0! 3.0] 4.0

Y l 3.2 ‘ 3.7 l 4.1 l 8.1 l 13.7 ' 22.6

To make the problem general, it will be assumed that there is no
additional information as to the nature of the funection.

The data may always be represented by a trigonometric series or by a
polynomial baving a sufficient number of terms; the six points tabulated
may be represented by a polynomial of the fifth degree, containing six
arbitrary constants. A form involving so many constants is undesirable
for three reasons: The constants would be quite difficult to evaluate;
the expression obtained would be relatively complicated to use; and the
determinations presumably involve experimental errors of such magni-
tude that an approximate representation is afl that is justified. The
problem, therefore, is to represent the data by an expression of the
simplest possible form that fits the tabulated results within the estimated
experimental error.

‘The first thing to do is to plot the data on ordinary rectangular coordi-
nates, as shown in Fig. 1-8. This serves two purposes: The nature of
the function is easily visualized, so that the empirical form to be employed
may be more readily selected; and the possibility of the simple linear form

y=a+bz (1-8)

is tested at the outset. The points do not fall on a straight line in Fig.
1-8, and the simple linear form is not applicable. Usually, the next
thing to do is to plot the data on logarithmic paper in order to test the
form

y = az” (1-9)

This form is very often applicable and is not too complicated for ordinary
use. It is represented by & straight line of y vs. z on logarithmic paper,
having a slope n and an “intercept” a at z = 1. If the ordinate and
abscissa scales are equal, i.e., if the distances along the axes are the same

'



