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Preface

During the first week of September 1999, the Second EvoNet Summer School on
Theoretical Aspects of Evolutionary Computing was held at the Middetheim cam-
pus of the University of Antwerp. Belgium. Originally intended as a small get-
together of PhD students interested in the theory of evolutionary computing. the
summer school grew to become a successful combination of a four-day workshop
with over twenty researchers in the field and a two-day lecture series open to a wider
audience.

This book is based on the lectures and workshop contributions of this summer
school. Its first part consists of tutorial papers which introduce the reader to a num-
ber of important directions in the theory of evolutionary computing. The tutorials
are at graduate level and assume only a basic background in mathematics and com-
puter science. No prior knowledge of evolutionary computing or its theory is nec-
essary. The second part of the book consists of technical papers, selected from the
workshop contributions. A number of them build on the material of the tutorials,
exploring the theory to research level. Other technical papers may require a visit to
the library.

The theory of evolution is at the crossroads of mathematics, computer science, statis-
tics, and the theoretical sides of physics. chemistry, and biology. There is often too
little interaction between these disciplines. One of the summer school’s goals was
to get researchers from many disciplines together. As a result, this book contains
papers from researchers with a background in complexity theory, neural networks,
probability theory, population genetics. statistical physics, and mathematics. Only
a fraction of the authors grew up in the evolutionary computing community itself’
This is reflected in the book, which presents a rich variety of approaches to the study
of the behavior of evolutionary algorithms.

Overview of the Tutorials

The tutorial part of the book starts with a general introduction to evolutionary com-
puting, from the point of view of an experienced engineering researcher, A. J. Keane.
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who uses evolutionary algorithms as one of his main tools in practical optimization.
This first tutorial has been written in cooperation with A. Rogers.

Before plunging into the theory, we present a second tutorial on evolutionary algo-
rithms, written by A. E. Eiben. He discusses the use of evolutionary algorithms for
constrained search problems.

A first course on the microscopic approach to the dynamics of the simple genetic
algorithm, as started by M. D. Vose in the early 1990s. is given by J. E. Rowe.
Filling in the actual numbers for a concrete example. but also commenting on the
latest development, the tutorial is all the reader needs to get started with this exciting
mathematical framework.

The statistical physics approach 1o the dynamics of evolutionary algorithms is a
macroscopic one: instead of modeling the exact dynamics. only a few statistics of
the dynamics are computed. A. Priigel-Bennett and J. L. Shapiro have written two
complementary tutorials on this line of research.

Following the line of macroscopic descriptions is the tutorial on evolution strategies
by H.-G. Beyer and D. V. Arnold. Evolution strategies operate on real spaces. Their
dynamics on a number of fitness models have now been fully analyzed.

Apart from being successful in practical applications. optimization algorithms based
on a model of the fitness distribution can be used to approximate genetic algorithms.
H. Miihlenbein and T. Mahnig introduce this approach to studying the dynamics of
genetic algorithms, also showing the link with population genetics and learning with
Bayesian networks.

Closing the gap between theory and practice is the tutorial by L. Kallel. B. Naudts,
and C. R. Reeves on properties of fitness landscapes and their impact on problem
difficulty. The tutorial explores issues such as Walsh coefficients, epistasis. correla-
tions in the fitness landscape, basins of attraction. and interaction structure.

Overview of the Technical Papers

In the first technical paper, A. Rogers and A. Priigel-Bennett build on the tutorials
by Priigel-Bennett and Shapiro. They analyze the dynamics of a genetic algorithm
with ranking selection, uniform crossover, and mutation on the *basin with a barrier’
model, which contains one feature commonly found in hard search problems. A
relationship between the optimal mutation rate and population size is found, which
is independent of the problem size.

M. Oates and coworkers also examine the relationship between population size and
mutation rate. Their exhaustive experimental work on a number of search problems
is presented in the second technical paper.

The third and last paper which deals with search in time-static problems is by D.
V. Arnold, who presents the state of the art of evolution strategies on noisy fitness
models. Beyer and Arnold’s tutorial on evolution strategies serves as reference ma-
terial.
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The quasispecies model from theoretical biology is studied by J. E. Rowe, and
also by C. Ronnewinkel, C. O. Wilke, and T. Martinetz. Both use the microscopic
model from Rowe’s tutorial to study the quasispecies adaptability to fitness function
changes by computing error thresholds and optimal mutation rates. However, their
approach to time-dependence is different. The former identifies cyclic attractors,
whereas the latter accumulate the time-dependency of the change cycle.

A. Berny demonstrates the link between statistical learning theory and combina-
torial optimization. Rather than searching in the space of bit strings, he demon-
strates how to search, using gradient techniques. in the space of distributions over
bit strings.

The genetic drift caused by multi-parent scanning crossover is rigorously calculated
by C. A. Schippers. He finds that occurrence-based scanning produces a stronger
than usual, self-amplifying genetic drift.

Reference material for the next six papers is the tutorial by Kallel, Naudts, and
Reeves. Instead of studying the dynamics of evolutionary algorithms, they focus
on the representation of search problems and the fitness landscapes induced by the
algorithm.

When choosing representation and genetic operators. many implicit assumptions
about the epistatic structure of the fitness function to be optimized are made. For
example, one-point crossover assumes that adjacent bit positions are highly corre-
lated. F. Burkowski proposes nullifying these assumptions. and learning the epistatic
structure on-line.

J. Garnier and L. Kallel develop statistical techniques to estimate the number and
sizes of the basins of attraction in a fitness landscape.

Can fitness functions be classified according to the difficulty they present to a ge-
netic algorithm? T. Jansen comments on this issue and details some of the Hlaws that
a number of measures, introduced as predictors of problem difficulty, suffer from.

The subject of symmetry in the representation of the search space has been stud-
ied in three independent contributions. First. there is the paper of P. Stagge and C.
Igel, which deals with redundancy caused by isomorphic structures in the context of
lopology optimization of neural networks. In a second contribution. A. Marino intro-
duces specific genetic operators for the graph coloring problem. in order to to search
the highly symmetric solution space more efficiently. Finally. C. Van Hoyweghen
introduces a technique to detect spin-flip symmetry in arbitrary search spaces.

The last contribution (o this book. and also the largest in size, is by P. Del Moral
and L. Miclo. They first propose a model for GAs which generalizes Vose's model
(introduced in the tutorial by Rowe) to continuous search spaces. inhomogeneous
fitness environments. and inhomogeneous mutation operators. In this model a pop-
ulation is seen as a distribution (or measure) on the search space. and the genetic
algorithm as a measure-valued dynamical system. Then. they study the convergence
properties of the finite population process when the population size tends to infinity.
and prove that it converges uniformly with respect to time to the infinite population
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process. Finally, they show how their model of GAs can be used in the context of
nonlinear filtering. They prove the efficiency of finite population GAs to approxi-
mate an observed signal in the presence of noise.
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An Introduction to Evolutionary Computing
in Design Search and Optimisation

A. Keane
Lecture notes produced by A. Rogers

Department of Mechanical Engineering
University ot Southampton
Southampton SO17 1BJ, UK

E-mail: andy.keane @ soton.ac.uk

Abstract. Evolutionary computing (EC) techniques are beginning to find a place in engi-
neering design. In this tutorial we give a brief overview of EC and discuss the technigues
and issues which are important in design search and optimisation.

Keywords
Evolutionary computing. design search. optimisation, problem solving environment

1 Introduction

The purpose of this introduction is to present, to a wide audience. some of the ideas
which are important in the application of evolutionary computing (EC) algorithms
to engineering design. This leads on to an area known as design search and optini-
sation where evolutionary computing techniques are beginning to find real applica-
tions.

Perhaps the first question to ask is: why do we do this at all? The general answer is
that life is becoming more computationally complex and in the field of engineering
we are presented with an increasing number of computationally complex problems
to solve. The computational complexity of optimising these systems challenges the
capabilities of existing techniques and we seek some other heuristics. When we
look around at the real world. we see many examples of complex systems. ourselves
included, which have arisen through evolution. This naturally leads to some desire
to emulate evolution in our attempts at problem solving.

As an example of a computationally complex problem. we can consider designing
atrcraft wings — an area from which several of the examples in this tutorial will be
drawn. Alternatively. we may be trying to schedule some process in a factory or
simply trying to fit curves to data. [n some senses. all these things are about design,
and by design, we mean the idea that we want to create something. The whole point
to evolutionary computing is the creation of designs. particularly in the domain of
complex problems and environments.
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Figure 1. Example of an optimisation landscape

It is useful to briefly consider what design is, how it is done and where evolution-
ary computing fits in. We are all surrounded every day by extremely complicated
technology which we generally take for granted. As an example, consider the cars
we drive. Should we have a crash, the airbags will explode and the car will crumple
safely around us because someone has thought about and modeled all the processes
and components involved in that crash. To do this nowadays, automotive engineers
use high-performance computer networks which are highly developed into sophis-
ticated environments.

Designing complex things such as cars requires us to put lots of things together. It
requires us to know something about what it is we are trying to design, to have some
way of interfacing it to the user and perhaps some type of search and optimisation
routine with resource management. The whole thing may be called a problem solv-
ing environment (PSE) and it is into this environment that evolutionary computing
techniques fit.

In summary, designers in the broadest sense — simply people trying to create some-
thing — increasingly see the need for a PSE. Ideally, these PSEs contain some sort of
search and optimisation and it is here that evolutionary computing techniques find
an application. Thus, evolutionary computing is not used in isolation but as a part of
a design tool which has to be of some utility.

What follows are some introductory remarks on several topics which will be ex-
panded on later in the course of this tutorial.

Search and Optimisation. Two terms which are often used in evolutionary com-
puting are search and optimisation. We can illustrate what these mean by consider-
ing a simple landscape — see figure 1. Optimisation is about trying to walk up a hill
and hopefully, through effectively searching the landscape, walking up the highest
hill.

At its simplest this is all we are trying to do. We have some landscape which we are
trying to walk through. Usually we cannot see the landscape, so the whole business
of evolutionary computing is trying to do this blindfold. This introduces questions
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such as: how do we know we are at the top of the hill and how do we know it is the
right hill?

Resources. Search and optimisation always requires some other piece of code to
be plugged into it — we apply evolutionary computing to something. It is usually a
piece of analysis code and we are trying to capture the intentions of the designer in
this code. Given the computational complexity of the problems we are considering,
computing power dominates this process. Given overwhelming computing power,
most problems can be solved. With finite computing resources we have to be more
careful.

Current Techniques. What is the current state of the art in engineering design?
Most PSEs now include some sort of hill-climbing optimisation and parallel com-
putation is common. Evolutionary search is known about but it is not generally in
everyday use. The use of meta-computing techniques and resource scheduling are
beginning to be considered as approaches to the problems of limited computing
power.

Representation. Representation is one of the key issues in this work. How do we
represent what it is that we are trying to design? Inevitably people represent their de-
signs with numbers, so the method of encoding between the two is important. How-
ever, an engineer also has a selection of models which can be used which range in
sophistication and cost. It is not simply a question of representation and method but
representation, method, and model which seem to be the most important. Designers
have aspirations. constraints, and varying and multiple objectives. They often don't
know what they want or cannot express what it is exactly they want. But in general,
they want robust designs.

Classical search methods have been around for at least fifty years and they are well
tried. Crucially, people don't believe they are likely to lead to any more innovation.
On the other hand, evolutionary computing methods have some advantages but they
have a problem — computational expense. If we come up with an evolutionary com-
puting paradigm which is really very powerful but is too computationally expensive,
it will not be used.

2 A Brief Overview of Evolutionary Computing

The history of evolutionary computing goes back to the 1960s with the introduc-
tion of ideas and techniques such as genetic algorithms, evolutionary strategies and
evolutionary programming [3). Whilst all differ slightly in their actual implementa-
tions, all these evolutionary computing techniques use the same metaphor of map-
ping problem solving onto a simple model of evolution.
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EVOLUTION PROBLEM SOLVING
Individual <«— Candidate Solution
Fitness > Quality
Environment «— Problem

We have a population which we want to evolve from time step ¢ to time step ¢ + |
by selection, recombination and mutation. There is some contention about which of
the two, mutation or recombination, is the more powerful, with there being a whole
history in the German academic community of using only mutation in evolutionary
strategies. To a certain extent though, the ingredients can be mixed and matched.
One is trying to introduce diversity in the designs through mutation and recombi-
nation, and then exploit this exploration through selection of better solutions: bal-
ancing the growth of ideas alongside the selection of ideas. One interesting aspect
is that this balance occurs all the way through but the nature of the algorithms we
use implies that there tends to be a large diversity at the beginning and very little
towards the end.

Hopefully through the correct choice of operators, we achieve a balance between
exploration and exploitation and our solutions steadily get better.

Although a great deal of the evolutionary computing literature concerns compar-
isons of one algorithm to another, some general points about the advantages of evo-
lutionary computing techniques can be made:

o Widely applicable.

o Low development and application cost.

e Easily incorporated into other methods.

o Solutions are interpretable.

o Can be run interactively and allows incorporation of user-proposed solutions.
e Provide many alternative solutions.

Whilst they have been shown to be useful in many areas. evolutionary computing
techniques have several disadvantages when compared to some other techniques:

o No guarantee for optimal solution within finite time.
e Weak theoretical basis.

e May need parameter tuning for good performance.
o Often computationally expensive and thus slow.

Apart from the computational expense, perhaps that which most directly effects the
acceptance of evolutionary computing is the weakness of their theoretical basis.
With no theory, we are left with a set of rules of thumb for choosing and tuning the
algorithms.



Evolutionary Computing in Design Search and Optimisation 5

3 Evolutionary Computing in Design Search and Optimisation

When actually implementing an evolutionary computing algorithm we are presented
with a wide range of choices. Which algorithm should we use? Which operators
should we use? How do we set the parameters? There are a number of books avail-
able which help with these questions | [-4.7]: however, when using these algorithms
in engineering design we have a number of other additional issues which must be
considered.

3.1 Representation

Deciding on a good representation is fundamental to the performance of evolution-
ary computing techniques. The algorithms work on numbers, usually binary, but we
are not trying to design a string of numbers. We may be trying to design a wing. a
communications network or a schedule, and in some way we have to link the two
together. This point turns out to be absolutely critical to the success of the applica-
tion.

It is self-evidently true that we can trade-off the ability of any representation to be
compact, against its ability to represent all possible designs. This is a really fun-
damental decision. Do we want to describe any possible design or do we want to
describe something in a small region around where we currently stand?

If we are using an evolutionary algorithm to design the wing for a jet aircraft, do
we want to think about bi-planes? Probably not. Do we want to consider a wing of
alternative materials? Maybe. Someone has to make these decisions and it cannot be
done without some domain expertise. Experience shows you need a domain expert
and an evolutionary computation expert together, as it is this critical stage which
often determines the outcome of the project.

If we again consider our wing design problem suggested above. the classical acro-
dynamics of the wing are based on concepts of wing span. sweep. chord and camber.
The interesting thing about these words is that these are ways which aerodynami-
cists have worked out to describe wings. They are a particular representation of a
wing which is relevant when considering the flow of air over it.

An alternative would be to use the x,v and : coordinates for the surfaces. This
presents the problem that whilst we can describe a wing, we can also describe vir-
tually anything else as well. Moving down the trade-off in compactness, we are
increasing the complexity of the object which we can describe and are thus increas-
ing the domain in which the potential designs can exist. We are making the problem
potentially harder and if we do not need the complexity at this level. we run the risk
of making the problem almost insoluble.

The opposite danger comes from sticking too rigidly to an existing representation,
Through existing design techniques the representation may have become so spe-
cific that it traps the possible solutions into a local optimum and does not have the
generality to describe wing shapes which may indeed be better.
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Choices across this sort of domain make a real difference and it is clear that they
cannot be made without some domain knowledge.

3.2 Constraints and Multiple Objectives

Often the objectives of a design are not completely defined. An engineer will of-
ten have multiple objectives and in some sort of hierarchy. Unless this appraisal
of potential designs is somehow formulated and included in the analysis code, the
expectations of the engineer will differ from the designs which our algorithm is
actually producing.

Constraints are another issue which is yet to be fully addressed. How do we handle
a list of certain criteria which invalidate a particular design? There are a number of
techniques, some of which are discussed by Eiben in this volume (page 13), and we
must decide which one is most relevant.

3.3 Mutation

Mutation is critical to a lot of these results. It is often said to be there Jjust to ensure
that every part of the search space may be reached. However, successful search
algorithms are often run just using mutation and selection without crossover. Indeed
evolutionary strategies are predominantly used in this fashion.

The idea behind mutation is that we are making local steps in our landscape. Our
choice of mutation operator and representation should mean that we are making
small changes to our design and not leaping to a radically different solution.

3.4 Recombination

Recombination or crossover allows parents to pass on some of their characteristics
to their children. The motivation being that we can use good parents to develop even
better children. There are many ways of doing this but all involve the combination
of parts of one parent with the complementary parts from another.

There is a trade-off between recombination and mutation which reflects some of the
history of the trade-off between the various communities. Recombination tends to
be seen as more of an exploitation operator and mutation as more of a exploration
operator. Some people would tend to suggest mixing these in, so we do more ex-
ploration at the beginning and more exploitation towards the end. These are more
examples of parameter and algorithm tuning which are dictated by rules of thumb
rather than a solid theoretical basis.
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3.5 Niching

When we initially discussed optimisation, we considered trying to find the single
global optimum in the problem. In engineering applications this may not be the case
and the question has to be asked whether we want the best solution or do we want to
know about a number of areas in the problem space where there are good candidate
solutions? Depending on our aspirations, we may want to impose some form of
niching techniques to allow the population to divide into smaller sub-populations,
each focused around a difterent part of the problem space.

3.6 Repeatability and Elitism

Evolutionary computing techniques are stochastic and thus no two runs will nec-
essarily produce the same results. Whilst in some applications this is acceptable, it
can be quite discouraging to produce a particular good solution once and never to
be able to find it again.

This leads to many issues concerning the repeatability of evolutionary computing
algorithms. Do we just want to get one very good solution or do we want a good
solution every time? If we were doing process scheduling we might settle for the
former but an automotive engineer designing a car would probably prefer the latter.

Another concern which stems from the stochastic nature of the algorithm. is that a
good solution once found within the population may be lost later in the evolution.
Whilst it always makes sense to keep a record of the best solutions. elitism strategies
ensure that these solutions stay in the population.

3.7 When to Stop?

Having set up the representation and run the evolutionary computing algorithm. the
final decision is when to stop it. Without any prior knowledge. it is impossible to tell
whether the best solution has been reached. The decision most often comes down to
one of time and computing resources.

4 An Example of EC Design

As an example of the techniques and problems discussed we will consider an actual
case of an cvolutionary computing algorithm being used to solve an engineering
problem. Figure 2 shows a photograph from a NASA mission in 1987 as part of a
proof of concept programme to show that astronauts could build structures in space.

One of the problems with these structures is that they tend to have very severe vibra-
tion problems. They are light regular alloy structures in an environment where there
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Figure 2. NASA photograph showing an astronaut constructing a boom in space

is no air to provide damping. We started to look at the vibrational characteristics of
structures like these when subject to some vibrational noise at one end [6,5] . The
objective was to use evolutionary computing techniques to design the geometry of
the beam such that the vibrational noise does not travel through it. This is a straight-
forward engineering job which is actually critical to both ESA and NASA who plan
to launch future missions with booms of this type fifty metres in length.

Figure 3. Diagram of simple 2D boom design



