T e BASIC
.+ Programming:
- A Structured Approach

Clark* Drum

Copyright © 1983

by South-Western Publishing Co.
Cincinnati, Ohio

ALL RIGHTS RESERVED

The text of this publication, or any part thereof, may not be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, storage in
an information retrieval system, or otherwise, without the prior written permission of the publisher.

ISBN: 0-538-10780-4
Library of Congress Catalog Card Number: 82-62636

12345678Ki09876543
Printed in the United States of America

Preface

Computers have become indispensable tools for businesses, professional
people, and governments. Computer programming ability has thus become
vastly more important, both as a career opportunity and for personal use. The
advent of microcomputers has resulted in a literal explosion of computers using
the BASIC language.

This text teaches the BASIC language, with an emphasis on programming
business applications. The great majority of career opportunities in program-
ming are in business. Several features of the text make the learning of pro-
gramming easier.

All programming principles are presented in the context of practical ap-
plications. Each chapter emphasizes one idea. Beginning with Chapter 4, each
chapter is divided into two topics. Topic I presents general principles—principles
that apply regardless of the computer language being used. Topic II explains
how to apply those principles using the BASIC language. As each BASIC
keyword is presented, its general form and an example are given. Each chapter
contains an example program using newly presented keywords. This helps in-
tegrate the new keywords with previously learned material. Each topic includes
review questions. At the end of each chapter are lists of vocabulary words and
BASIC keywords that were presented.

The computer diskette to accompany Structured BASIC contains a com-
puter-driven tutorial that dynamically illustrates the operation of each BASIC
keyword. This tutorial makes hard-to-grasp keywords much easier to understand.
Each keyword is used in a program statement that remains on the screen while
the output of the statement is displayed. The arguments of the keyword are
changed on the screen, with the effects of each change appearing immediately
in the display. _

Each chapter includes four programming assignments. Assignment 1 is the
easiest and can generally be completed by reference to similar examples in the
chapter. Assignments 2 and 3 require the progressive application of creativity.
Assignment 4 is an enrichment assignment, usually presenting new information
and requiring a still higher level of output.

vi

PREFACE

Proper documentation is emphasized throughout the text. The use of struc-
tured programming techniques is developed without the use of burdensome
jargon. Hierarchy charts, program documentation sheets, and module docu-
mentation sheets are used instead of flowcharts. These forms of documentation
are much easier to understand and use, and lead more quickly to error-free
programs. Their use makes documentation much less a chore and, therefore,
much more likely to be done.

Four end-of-the-book items are handy references once particular program-
ming ideas have been learned. A glossary contains all new vocabulary words
presented in the text, making review much easier. A quick guide to all BASIC
keywords is included. This guide is a handy reference for refresher purposes
once the keyword has been learned. Each entry in the reference guide refers
to the page in the text that will give full information. An ASCII code table is
convenient for use when writing programs that do character manipulation. An
appendix gives suggestions for debugging programs.

The computer diskette contains a computer driven tutorial that dynamically
illustrates the operation of each BASIC keyword. This tutorial makes hard-to-
grasp keywords much easier to understand. The keyword is used in a program
statement that remains on the screen while the output of the statement is
displayed. The arguments of the keyword are changed on the screen, with the
effects of each change appearing immediately in the display.

The versions of BASIC used by four popular microcomputers are empha-
sized throughout the text. Differences between computers are pointed out in
each chapter and alternate methods of programming are presented where nec-
essary. There is never any doubt as to which keywords apply to the particular
computer and version of BASIC being used. The four computers covered are
the Apple II', Commodore?, IBM Personal Computer?, and Radio Shack TRS—
80 Models I and III*. All items that apply to the IBM Personal Computer are
valid with other computers using Microsoft BASIC, version 5.x. Most IBM
items also apply to the Radio Shack TRS-80 Model II. All items applying to
the TRS-80 Model I are valid with most other computers using version 4.x
Microsoft BASIC.

!Apple 11 and Applesoft are trademarks of the Apple Computer Corporation. Any reference
to Apple II or Applesoft refers to this footnote.

*Commodore is a trademark of Commodore Business Machines, Inc. Any reference to the
Commodore microcomputer refers to this footnote.

*IBM Personal Computer is a trademark of International Business Machines. Any reference
to IBM or the IBM Personal Computer refers to this footnote.

*TRS-80 is a trademark of the Radio Shack Division of Tandy Corporation. Any reference
to the TRS—80 or the Radio Shack microcomputer refers to this footnote.

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Contents

Getting Started in BASIC

Topic 1.1—INTRODUCTION TO COMPUTERs AND PROGRAMMING

Topic 1.2—ENTERING AND RUNNING A PROGRAM

Doing Arithmetic and Designing Programs

Topic 21—DOING ARITHMETIC WITH THE COMPUTER
Topic 2.2—INTRODUCTION TO PROGRAM DESIGN

Using Read and Data Statements

Topic 3.1—USING THE KEYWORDS GOTO, IF . .. THEN, READ
AND DATA

Topic 3.2—DATA TERMINATORS, COLUMN HEADINGS, AND
CHARACTER VARIABLES

Topic 3.3—USING A PROGRAM DOCUMENTATION SHEET

Improving the Appearance of Printed Reports

Topic 41—PLANNING THE REPORT
Topic 4.2—USING BASIC TO FORMAT A REPORT

Designing Interactive Programs

Topic 51—WHAT ARE INTERACTIVE PROGRAMS?
Topic 5.2—WRITING AN INTERACTIVE PROGRAM

Summarizing

Topic 6.1—WHAT IS SUMMARIZING?
Topic 6.2—SUMMARIZING WITH BASIC

~N -~

17

17
22

31

31

38

o1
61

Q9

100

125

125
127

iv CONTENTS

Chapter 7 Subtotals and Group Printing 161
Topic 7.1—USE OF SUBTOTALS AND GROUP PRINTING 161
Topic 7.2—PROGRAMMING SUBTOTALS AND GROUP
PRINTING WITH BASIC 163
Chapter 8 Writing Programs in Easy-to-Understand Modules 191
Topic 8.1—PLANNING A MODULAR PROGRAM 1A
Topic 8.2—CODING A MODULAR PROGRAM 199
Chapter 9 Using Controlled Loops 241
Topic 9.4—INTRODUCTION TO CONTROLLED LOOPS 24
Topic 9.2-—WRITING BASIC LOOPS WITHOUT THE KEYWORD GOTO 242
Chapter 10 Tables 281
Topic 10.4—USING TABLES TO STORE DATA 281
Topic 10.2—IMPLEMENTING TABLES USING BASIC 283
Chapter 11 Sorting 327
Topic 11.1—A SORTING ALGORITHM 327
Topic 11.2—WRITING PROGRAMS USING A SORT ROUTINE 331
Chapter 12 Advanced Handling of Character Data " 373
Topic 121—CONCEPTS OF ADVANCED CHARACTER
HANDLING 373
Topic 12.2—USING BASIC FOR ADVANCED CHARACTER
HANDLING 379
Chapter 13 Sequential Data Files 421
Topic 13.1—PRINCIPLES OF SEQUENTIAL DATA FILES 421
Topic 13.2—IMPLEMENTING SEQUENTIAL FILES IN BASIC 424
Chapter 14 Random Data Files 473
Topic 14.1—PRINCIPLES OF RANDOM DATA FILES 473
Topic 14.2—IMPLEMENTING RANDOM FILES IN BASIC 475
Glossary 513

Appendix A Quick Reference Guide to Commonly Used Keywords 521
Appendix B Debugging 526

Appendix C ASCIl Code 528
Index 532

Chapter /I

Getting Started in BASIC

Objectives: 1. Describe the computer and its functions.

2. Define computer program.

3. Wirite a simple BASIC program using the keywords REM,
PRINT, and END.

4, Use commands NEW, RUN, and LIST.

5. Add, delete, and change program lines.

6. Obtain hardcopy output from the line printer.

7. Save and load programs.

Topic 11— INTRODUCTION TO COMPUTERS
AND PROGRAMMING

One of the greatest electronic marvels of the century is the computer. Since
1945 when the first electronic computer made its appearance, technology has
advanced rapidly. Perhaps no other invention has touched the lives of so many
people. The size of computers continues to decrease as they work more rapidly,
become less expensive, and are easier to use. Computers are in use everywhere—
in businesses, schools, and homes.

WHAT IS A COMPUTER?

A computer is an information processing machine that can accept data,
make comparisons, and perform calculations. Since it is electronic, it works
accurately and tirelessly at high rates of speed. Computers process data that are
often referred to as input. Input (raw facts, numbers, characters, etc.) is entered
into the computer and stored in its memory. The input is processed and becomes
output. The output is referred to as processed information. This information

1

2 CHAPTER ONE GETTING STARTED IN BASIC

can be displayed on a screen, printed, or stored for future use. For example,
a student’s test scores during a given time period would be considered as input
if they were to be entered into a computer. If they were added together and
averaged, the average would be the output and considered processed infor-
mation.

WHAT IS A PROGRAM?

Although many people think the computer has “intelligence,” it can really
do nothing without being directed step by step. These step-by-step instructions
are referred to as a program. Programs are written by persons known as pro-
grammers.

Programs are usually keyed in (typed) from a keyboard and “remembered”
by the computer. The computer can then carry out the instructions quickly
once they have all been entered. If the computer is equipped with a storage
device, the programs may be stored for future use. Storage devices are electronic
units that can write data on magnetic tape or a magnetic disk. The data or
programs stored on these units are called back into the computer when needed.

A computer can only “understand” programs written in machine language.
Programs written in machine language contain instructions using codes. These
codes have a special meaning to the computer’s electronic circuitry. Writing
programs in machine language is very difficult and time-consuming for the
programmer. To avoid these problems, programmers generally use high-level
languages. High-level languages use English-like instructions that the computer
translates into machine language. An interpreter or compiler program completes
the translation process. These translator programs are usually supplied by the
manufacturer of the computer.

The language called BASIC (Beginner’s All-purpose Symbolic Instruction
Code) is a high-level language. BASIC can be used to write programs for almost
all small computers as well as for many larger ones. BASIC resembles the
English language. It uses certain English words called keywords. Keywords are
words that have a special meaning to the translator program of the computer.
In this text, each chapter concentrates on a number of keywords. Appendix A
contains a summary of the more commonly used keywords. The summary may
be used as a reference when writing programs.

One of the easiest ways to learn BASIC is by studying examples of various
programs and then applying what has been learned to programming exercises
and activities.

WRITING A SIMPLE PROGRAM

As indicated previously, a program is a sequence of instructions that tells
the computer what to do. Each step in this sequence is known as a statement.
Statements begin with line numbers. It is best to start with line number 10 and
to increase each following line number by 10. By doing this, additional lines
needed to change the program may be inserted later.

CHAPTER ONE GETTING STARTED IN BASIC 3

Each statement in BASIC contains one or more keywords that have a
special meaning to the computer. Before examining some of the keywords in
depth, observe the following short program.

LINE NUMBER
l KEYWORD

1@ REM ** THIS IS A SAMPLE PROGRAM
2@ PRINT "HI' I AM A COMPUTER."

30 PRINT "I WILL DO WHAT I AM TOLD."
4@ END

When the computer is instructed to execute the statements of this program,
the following output will be produced:

P HI! I AM A COMPUTER.
I WILL DO WHAT I AM TOLD.

Throughout this text, all examples of programs will be on a brown shaded
background, and all examples of output will be on a printout page similar to
the example above.

The program above illustrates three keywords; they will be used in almost
all programs. They will be explained in more detail in the following sections.

Using the Keyword REM. The keyword REM is a shortened form of the
word REMark. It allows comments to be placed in a program. It may be placed
on any line in the program where the programmer wishes to make comments.
REM has no effect on the computer. In fact, the computer ignores any statement
beginning with REM. Any character on the keyboard may be used in a REMark
statement. The asterisks (*) in the example merely separate the comment from
the keyword REM. REMark statements are useful for identifying a program,
labeling different sections, or making explanations. The general form of the
REM statement is as follows:

General form: line number REM fext
EXOmpIeSZ 1@ REM *% COMMISSION REPORT

9@ REM THIS SECTION CALCULATES 7% COMMISSION

CHAPTER ONE GETTING STARTED IN BASIC

Note: In this text the general form of each new keyword will be illustrated in
this manner. Notice that the zeros have a slash through them (0). This is done
so they will not be confused with the letter “O.” The double colons (::) used
between lines 10 and 90 indicate that additional statements have been omitted.

Using the Keyword PRINT. The keyword PRINT causes printing or output
to appear. If a CRT (cathode ray tube, which is like a TV screen) is being used,
the output will appear on the screen. If a printer is being used, the output may
appear on the paper.

General form: line number PRINT items to be printed

Example: 1@ PRINT "THIS IS AN EXAMPLE"

Example:

Output:

Example:

Output:

Printing Literals. One of the items that can be printed is a literal. A literal
is a message enclosed in quotation marks. In the example program on page 3,
the PRINT statements use literals.

1@ PRINT "HI! I AM A COMPUTER."

([] ®
e HI! I AM A COMPUTER.

The PRINT statement will display any characters (including blanks) that have
been keyed in between quotes. Quotation marks may not be used inside another
quotation mark. If there is a need for quotation marks inside, use single quotation
marks.

1@ PRINT "THIS IS A 'WILD’ PROGRAM"

® THIS IS A 'WILD’ PROGRAM

If a blank line is desired, PRINT with nothing following it may be used.

CHAPTER ONE GETTING STARTED IN BASIC 5

EXOmple: 1@ PRINT *“THIS IS AN EXAMPLE"

20 PRINT
3@ PRINT “OF DOUBLE SPACING"

Output: ® THIS IS AN EXAMPLE

® OF DOUBLE SPACING

Printing Constants. Another type of item that may follow the keyword
PRINT is a constant. A constant is an actual number. It is not placed within
quotation marks. It may not include commas, dollar signs, or any other special
characters. However, it may contain a minus sign to indicate a negative number.

Example:

1@ PRINT 75.3
2@ PRINT -54.67

Qutput:

Q(i\'l'R()LLING SPACING WITH COMMAS AND SEMICOLONS

Combinations of literals or constants may appear after the PRINT state-
ment. The items may be separated by a comma or a semicolon.

Spacing with Commas. If commas are used to separate print items, the
results are printed in zones. The size and number of these zones vary with the
computer used. As can be seen in the example below, using a comma to print
items in zones is a method of setting up the output in columns.

EXGmp'e. 1@ PRINT "ZONE 1", "ZONE 2" ZONE 3"

2@ PRINT 10,20:30

Output:) °

IONE 1
12

6 CHAPTER ONE GETTING STARTED IN BASIC

In line 10 above, the commas between the literals cause the spacing illus-
trated in the output. Each comma tells the computer to move to the next zone
before printing the literal. If the literal itself contains more characters than will
fit into a print zone, two zones will be used. If the program attempts to print
more literals than the number of zones available on a line, the output will wrap
around (continue printing) on the next line.

Note also that the constants printed by line 20 are printed with a blank
space before them because they are positive numbers. If any number had been
negative, the negative sign (—) would have appeared in the first space. An Apple
computer does not reserve the space for the negative sign.

Placing two commas together causes the computer to move over two zones.

Example: 10 PRINT "ZONE 1"y,"ZONE 3"
2@ END
Output: ° °
e ZONE 1 ' ' ‘
[J
Spacing with Semicolons. When a semicolon is used to separate literals,
no space is inserted between the items printed. However, on computers other
than an Apple, if positive numbers are being printed, there will be one space.
These computers always provide one space before a number to allow for printing
the negative sign. The difference between the results of using a semicolon and
a comma can be seen in the following example:
Excmple: 1@ PRINT "NO","SPACE"
2@ PRINT "NO"3"SPACE"
3@ PRINT "TOTAL",120
4@ PRINT "TOTAL"3120
Output: NG

NOSPACE
TOTAL

TOTAL 120

USING THE KEYWORD END

The END statement causes the computer to stop executing a program.
Some computers require the END statement to be the last statement in a
program. Then it must contain the highest line number. The END statement
is optional for the Apple, Commodore Pet, IBM Personal Computer, and the
Radio Shack TRS-80 microcomputers emphasized in this book.

CHAPTER ONE GETTING STARTED IN BASIC 7

General form: line number END

Example: <8 enp

REVIEW QUESTIONS

What is a computer? (Obj. 1)

What is the difference between input and output? (Obj. 1)

What is a program? (Obj. 2)

Explain the difference between a program written in machine language

and one written in a high-level language. (Obj. 2)

What is a keyword? Give some examples. (Obj. 3)

Why is it desirable to increase each line number in a BASIC program by

10? (Ob;j. 3)

7. What is the purpose of the keyword REM? (Obj. 3)

8. What is a literal? Give an example of a statement that causes a literal to
be displayed. (Obj. 3)

9. What is a constant? Give an example of a statement that causes a constant
to be displayed. (Obj. 3)

10. Explain how the output of a program is different when a comma is used
and when a semicolon is used. (Obj. 3)

11. What is the purpose of the END statement? (Obj. 3)

12. Does the computer on which you are working require an END statement

to be the last line of each program? (Obj. 3)

halb ol S

ISAIN

Topic 1.2— ENTERING AND RUNNING A PROGRAM

The previous section introduced a simple program. This section introduces
commands used for entering (typing) and running (executing) programs. A
command tells the computer to take immediate action. Commands are not
numbered.

PROCEDURE FOR ENTERING AND RUNNING A PROGRAM

Entering a Program. Before a program is keyed in, the computer should
be told to “forget” anything that may already be in its memory. The command
NEW (or SCRatch on some time-shared computers) clears the memory of the
computer and should always be used before a new program is entered. Simply
key in the command and press the ENTER or RETURN key. In addition to
clearing the memory of the computer, the NEW command may also clear the

8 CHAPTER ONE GETTING STARTED IN BASIC

screen and move the cursor to the screen’s left edge. The cursor, which usually
is a dash, an underscore, or a solid block, marks the printing position at any
point. As any character or space is keyed in, the cursor moves from left to right.
Once the NEW command has been entered, key in the lines of the program.
Remember, each line must begin with a line number. Press the ENTER or
RETURN key at the end of each line. (Note: in the remainder of this text this
key will be indicated by ENTER/RETURN.)

Running a Program. After keying a program into the memory of the com-
puter, a command rather than a statement is needed to tell the computer to
execute the program. The command to execute a program is RUN. Simply key
in RUN and press the ENTER/RETURN key. Remember, do not key in a
line number before the command. If the command RUN is entered for the
program on page 3, the following output will appear:

HI! I AM A COMPUTER.
I WILL DO WHAT I AM TOLD.

RUN could be entered again, and the same output would appear because
the program has been entered in the computer’s memory. It will stay in memory
until it is altered (changed), removed with the NEW command, or the machine
is turned off. P

MAKING CHANGES IN A PROGRAM

Changes may be made in a program because the programmer desires dif-
ferent results or needs to correct errors. If there is an error in the program—for
example, a misspelled keyword or a missing quotation mark—an error message
will appear when the program is RUN (executed).

Error messages state the kind of error, such as the wrong usage or spelling
of a keyword. The computer stops executing the program when an error is
detected. Since there is such a difference in the way error messages are stated,
the list that comes with the computer must be used to interpret these messages.
Any errors have to be corrected before the program can be executed successfully.
The program may have to be examined to locate the line that contains an error.
This procedure is explained in the next section.

The TRS-80 and IBM microcomputers will follow the error message with
the line number of the statement that contains the error. At this point, simply
press ENTER, and the line will be displayed. It can then be replaced by
reentering the line with the correction.

Listing a Program. The command LIST will display the entire program
in the computer’s memory. If the program is long and sections have to be

CHAPTER ONE GETTING STARTED IN BASIC

displayed one at a time, LIST may be followed by the range of line numbers
to be displayed. For example:

LIST 10-100 would display lines 10 through 100.

LIST 50 would display line 50.

Adding Lines. New lines may be added to a program simply by keying
them. The line number assigned to the new line will control its placement in
the program. For example, if a new line is to be placed between lines 30 and
40, the new one might be numbered 35. (Note: the computer will automatically
put the line in its proper place; it does not have to be physically keyed in
between the two existing lines. In fact, a program may be entered in any order;
the computer will arrange the statements in numerical order.)

Deleting Lines. A single line may be deleted from a program simply by
keying in the line number and pressing the ENTER/RETURN key. On some
computers the command DELETE must be used along with the line number.
A group of lines may be deleted by typing DELETE followed by the line
number range. For example, the command DELETE 40-90 will remove all
lines from number 40 through number 90.

Modifying Existing Lines. One way to modify an existing program line is
to reenter the line number and new line. The new line simply replaces the old
line.

OBTAINING HARDCOPY

Example:

Example:

When microcomputers or terminals are used, the output appears on the
screen. If the computer has a printer attached to it, hardcopy output may be
desirable—that is, output in printed form. On the TRS-80 and the IBM,
LPRINT will cause the output to go to the printer when the program is RUN.
To print a blank line on the TRS-80, you need a statement that prints blanks.

1@ LPRINT "END-OF-YEAR REPORT"
2@ LPRINT " "<——This would print a blank line after the heading.

If hardcopy output is desired on the Apple, PR#1 must be used somewhere
before the first PRINT statement. This statement causes all of the output to be
sent to the printer. Later in the program, if the output is not to be sent to the
printer, the statement PR#0 is used.

4@ PRINT CHR®(4)35"PR#1"
50 PRINT "THIS WILL BE HARDCOPY OUTPUT!

9@ PRINT CHR$(4) 1 "pPRu@"

10 CHAPTER ONE GETTING STARTED IN BASIC

On the Commodore a routine (series of statements) must be written before
the first PRINT statement. The following example shows the routine that is
used:

Example: 40 OPEN 44

5@ CMD4

6@ PRINT "THIS WILL 25 HARDCOPY QUTPUT®
90 PRINT #4 turns off CMD
100 CLOSE 4

To obtain a hardcopy listing of the program itself, simply use the command
LLIST on the TRS-80 and the IBM computers. On the Apple the following

lines are entered:

PR#1
LIST
PR#0

The Commodore uses the following routine:

OPEN#4,4

CMD4, “PROGRAM LISTING” «— can be any name desired
LIST

PRINT#4

CLOSE#4

Note: Both of the above routines for hardcopy listings on the Apple and Com-
modore are not numbered since they are considered commands and not state-
ments.

SAVING A PROGRAM

When a program is entered into the main memory of the computer, it stays
there until the power goes off or it is purposely removed with the NEW com-
mand. If the program is needed for future use, it can be saved if a storage device
is available. The storage device may be a disk drive (recording device) that uses
a floppy diskette for storage. A floppy diskette is an oxide-coated plastic disk,
either 5% or 8 inches in diameter, enclosed in a protective covering. It is used
for magnetically storing data. The procedure to be used for saving a program
on disk varies with computers. SAVE, followed by the name of the program
enclosed in quotation marks, frequently is used to save the program on diskette.

Example: SAVE “EXCH1”

Note: The quotation marks are not used on the Apple.

The example illustrates a program name that is used frequently in this text.
The EXCHI1 means example for Chapter 1.

