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Preface .

The purpose of this monograph is to describe a microscopic nuclear theory which can
be used to consider all low-energy nuclear phenomena from a unified viewpoint. In this
theory, the Pauli principle is completely taken into account and translationally invariant
wave functions are always employed. Also, this theory is quite flexible; it can be utilized

" to study reactions initiated not only by nucleons but also by arbitrary composite particles.

Throughout this monograph, we have endeavoured to keep the underlying physical
ideas as easily comprehensible as possible. Consequently, it becomes frequently necessary
to sacrifice mathematical rigour in favour of clarity in presenting these ideas. In this
way, it is our hope that this monograph could be useful to many research physicists
in the nuclear field, experimentalists and theorists alike.

‘In chapters 1 through 4, the formulation of this theory is presented. Numerical examples
concerning bound-state, scattering, and reaction calculations are mainly described in
chapters 5 through 7. In chapters 8 through 15 we discuss, within the framework of this
theory, general properties of naiclear systems. Finally, in chapters 16 and 17, we show in
specific cases how one can achieve, without carrying out explicit calculations, a qualitative
or even semi-quantitative understanding of these cases by applying t the general physncal
concepts contained mherently in this theory.

Many of our colleagues have offered valuable advice and constructive criticism. These
‘people are: R. E. Brown, D. Clement, F. Gonnenwein, E, Kanellopoulos, P, Kramer,
E. Schmid, H. Schultheis, R. Schultheis, G. Staudt, W. Siinkel, and D. R. Thompson. To
them we express our most sincere gratitude.

It is also our pleasure to acknowledge W: Pilf, S. Smith, and G. Tollefson for their
assistance in the preparation of the manuscript. Finally, we are grateful to our wives,
‘Erika Wildermuth and Helen Tang, for their patience and encouragement throughout
the period in which this monograph was wntten ,

K. Wildermuth
Y. C Tang

Tiibingen, Germany
Minneapolis, Minnesota, U.S.A.
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1. Introduction

1.1. General Remarks

Numerous experimental and theoretical investigations have confirmed the proposal that
nuclei are built up of protons and neutrons (HE 32, IV 32]. Therefore it should be possible
to derive all the properties of a nucleus consisting of A nucleons, or of a nuclear reaction

in which A nucleons participate, from the Schrodinger equation for this A-body system

t. ~ h2 0 ' _ _ - ~'
H\P(f,,...,rA;t)=[ ™ Z vi’+V(r.,...,rA)J\xf(f,,...,rA;t)
. i=1 . (1.1)
)
= h'é'{ \I’(?],...,TA;t),

where T; denotes the space, spiri, and isobaric-spin coordinates.of the i™ nucleon.

To carry out this program we must overcome two problems:

(i) We must know the specific form of the nuclear interaction potential energy
V., ..., Ta).
(i) We must solve, at least approximately, the A-body Schrodinger equation.

The form of the nuclear potential is in fact not completely known, although it has
become increasingly evident recently that this potential can be considered as primarily a
superposition of two-body potenttals between all pairs of nucleons [BE 71]. The problem
with the two-body. potentials proposed earlier was that they could not reproduce the
nuclear saturation character, i.e., the property that the nuclear volume must increase
proportionally with the nucleon number A..This difficulty has led to speculation [DR 63]
that the nuclear interaction might include many-body forces in addition to the two-body
terms. Thus, for example, i the case of a three-body problem with an additional three-
body force [BR 73], one would have to write the nuclear interaction as

V=V tVitVy+Vns, o o A (1.2)

However, over the past twenty years, increasingly reliable two-nucleon potentials have
been developed describing the two-nucleon scattering data up to several hundred MeV-

[BE 71, BR 60, BR 62, HU 62]. In contrast with the earlier two-body interactions, these
potentials contain not only strong tensor and Majorana (space-exchange) components, but
also velocity-dependent terms or a repulsive core which prevents any two nucleons from -
approaching each other too closely. Such improved two-body potentials have been found -
capable of producing saturation {BE 71}. Hence, it has become gradually clear that
potentials without large many-body terms, like V3, are adequate to fit the nuclear data,
including the saturation character. '

T Most of the general considerations which we bring into this monograph remain valid even if the
_nuclear interaction should contain large many-body terms of short-range character.




2 1. Introduction

In our choice of a nuclear potential, we shall adopt a phenomenological point of view;
that is, we shall assume a nuclear potential composed only of two-body forces, and we
~ require only that our two-body potentials be reasonably consistent with the two-nucleon
scattering data, give the correct deuteron binding energy, and have the proper nuclear
saturation character [WU 62]. The presently unresolved question as to which of the
possible potentials meeting these criteria is the correct one will not be considered in this
monograph, since it is more a questron for reiatrvrsuc quantum theory Hence, for our
A-nucleon Schrodinger equation, we write

. N A A A ' '
H\P(ﬁ,...,f’,\;t)=[ ™ YoV )y > v,J Y(f),...,Ta;t)
) . i=1 i<jj=1 . (13)
= h‘é?‘l’(f],...,f[\;t).

For quantitative calculations typical two-nucleon potentials meeting our criteria will be
given in Chapter 5.

Our adoption of a potential corresponds to forces which act without propagation delays
and hence are not relativistically correct. This neglect of relativistic effects and our con-
sequent use of the non-relativistic Schrodinger equation are reasonable as long as the
kinetic energy per nucleon is much less than the nucleon rest mass of about 940 MeV.
With this restriction on the energy, we may consider the problem of the nuclear potential
as more or less settled, at least for our purposes; for, whatever the outcome of the rela-
tivistic theory, it must in the low-energy limit yield a potential in reasonable accord with
the phenomenological one. '

We shall now turn our attention to the second problem we wish to develop a flexible
and consistent approxi'matron method for solving the A-nucleon Schrodinger equation.
The need for flexibility arises, because the properties of nuclei vary considerably from
nucleus to nucleus and even from level to level. Hence it is necessary to have a method of
great generality such that for each individual nuclear state we can, first, systematically
use our physical intuitiof! to include every physical effect that might help to determine
the character, of the wave function, and then, quantitatively test and improve this ap-
proximate wave function to which our intuition has led us.

As will be seen, the method to be discussed in this monograph does meet this require-
ment. It is in fact a unified theory of the nucleus, since it considers nuclear reactions and
nuclear structure from a unified point of view. In addition, with the help of this method,
we shall be able to understand the relations between the various nuclear models currently
in use. These models have been developed to explain specific nuclear plienomena and
very often seem to contradiot one another. For the resolution of these contradictions, it
will be shown that the Pauli exclusion principle is of fundamental importance, because it
reduces to a large extent the differences between different conceptions.

To obtain this method we shall rewrite the many-body Schrédinger equation as a
projection equation. But before we do this, we shall discuss why with the usual considera-
tion of the many-body Schrodinger equation, it is in practrce not possible to derive such
a unified theory of the nucleus. -
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1.2. Difficulties of Some Reaction Theories

_ Instead of using the time-dependent Schrodinger equation (1.1) as the starting equation
for the treatment of reactions, we can also use the time-independent Schrédinger equation

Hy=Ey, - (1.4)

because any time-dependent solution ¥ of eq. (1.1) can be expressed as a linear superposi-
tion of the solutions ¥ of eq. (1.4).

As is well known, it is possible only in very special cases to solve exactly eq. (1.4) for
A > 2, Thérefore, one is generally forced to use approximation methods which allow one
to approximate the exact solutions in successive steps. For the derivation of these methods
one commonly formulates the Schrodinger equation (1.4) as an integral equation. The
advantage of this is that from the beginning the boundary conditions for a given reaction
problem can be incorporated into the solution.

To obtain this integral equation (Lippmann-Schwinger equation) one divides the
Hamiltonian H into two parts,
H=H,+H, o . . (1.5)

where Hy is the Hamiltonian for the target and ihe bonibarding particle without mutual
interaction, and H' describes their mutual interaction. Substituting eq. (1 5) mto eq.(1.4)
yields -

(Ho- By =—H'y, | 16) -
from which one obtains innnediateiy the following Lippmann-Schwinger equation: .
Y=o~ (Ho—E—ie) " H'y. €e>0 (1.7
In eq. (1.7), ¢o represents a sofution of the homogeneous equation ‘
(Ho~E)go=0 - | (1.8)
and de;v;cribes the target and the incoming particle without interaction. The texrm
—(Ho —E —i€)"! H'{ is responsible for the ensuing scattering and reactions. The infini-

tesimal part — ie guarantees that only outgoing waves are produced by this term, as is
required by physical argument. T

Without proceeding any further, one can already recognize the dlfﬁcultles inherent in
eq. (1. 7) For this we consider eq. (1.7) in the position representation; that is,

= R AR G(i,..., T, TA)
¥ =90 (N, ,i’A) ‘r',§" ‘(1'1 ATy ) (1.9)
@, LB HI T, L0 W (E TR, -

T our emphasis in this section is to point out the essential difficulties associated with reaction theories
formulated in a straightforward way from eq. (1 7). Hence, mathematical problems connected with
three-body breakup and so on will not be dealt with here.
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where the sign S indicates summation over discrete variables and integration over contin-
uous variablésThe function G (¥,,...,¥5;¥i;..., T, ) represents the Green’s function
for the resolvent operator ~ (Ho — E —i€)™" and has the following form:

Gy, ... TAIThr. s Th) = S (f’,,...,fAIEg,)\a“>——'l—_i— & AT LT

a Es—E
Fortq ‘ (1.10)

In the above equation, the functions (T, ..., T5 | Eg,A,) are orthonormahzed solutions
of the homogeneous equation (1.8), with X, denotmg collectlvely the eigenvalues of all
those operators which carni be diagonalized sunultaneously with Ho.

The representation of G(¥,,...,Ta ;?'1 eees Y’;\) by means of the orthonormalized
eigenfunctions of Hy has the important consequence that in all approximation methods
which one uses to solve eq. (1.9), the wave function ¥ has to be expanded in terms of
the orthonormalized eigenfunction set of Hy. From this it follows that only transitions
to those final states which are eigenstates of Hp can be calculated in a relatively simple
manner. For example, let us consider the interaction of two hydrogen atoms and assume
for the moment that both the protons and the electrons involved are distinguishable. Then
one can calculate the transition probabilities to all those states where the hydrogen atoms
are in their ground or energetically allowed excited states and where the two electrons
are not exchanged. On the other hand, transitions to final states which are not eigenstates
of Hg cannot be described in a useful way, because these states have to be described in-
general by a very complicated superposition of eigenstates of Hy, including highly excited
continuum states. In our example here, these are for instance transitions where the reaction
products are a H™ ion plus a H" ion, i. ., both electrons belong to one hydrogen nucleus.
In nuclear physics, the  Li(p, >He) *He rearrangement reaction is an example of such a
transition.

Final states where nothing else occurs except identical particles being exchanged are
also not eigenstates of Hg. Therefore, such exchange transitions also cannot be described
in a simple way by a reaction theory which is based on the Lippmann-Schwinger equation
{1.7). This means that with such a reaction.theory, even a proper consideration of the
indistinguishability of identical particles cannot be simply sarried out.

The underlying reason for the above-mentioned difficulty is that the splitting of H
into Hy and H' is not symmetrical in all particle coordinates. This has the consequence -
that the Green’s function G (¥y,...,Ta;T1,...,TA) is also not symmetrical in these
coordinates. For the case of two hydrogen atoms the Hamxltoman operators H, Hy, and
H' have the followmg forms:

b 18 e
2M vR: 2m, V'l 2m,
e & ez. e e? . o2 (1.11)
R,-Ryl IR, -l IR, —r; IRy—r;l [Ry—rl "Irp—rpl” -

H=- g2 - Vi,
2Mp Rl

+
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N B, oW, e

. =; —- — e — —— —_ - 12

Ho =~ onr YRy " 3my Vn TR, <l M, YR Zm; Ve iR (01D
2 B 2 2 2

HI € € € € (113)

= — —_— +
IRI—Rzl IR|"‘I'2I |R2*r|| |l’|‘l‘2| ’

As is easily seen, H is invariant against a pemmtatlon of the proton or electron coordinates,
but not Hy and H'.

One can certainly split H into Ho and H'insucha way that H, describes the reaction
products in the final state (outgoing channel) without interaction. But now the description
of the particles in the initial state (incoming chapnel) becomes very complicated. This
means that, by means of the Lippmann-Schwinger equation discussed here, the boundary
conditions for either the incoming channel or the considered outgoing channel can be
fulfilled, but not both together.

For the scattering of nucleons by nuclei, the difficulty associated w1th the mdlstm-
guishability of the nucleons can be removed in the framework of a shell-model reaction
theory {[MA 69] by truncating the Hilbert space in such a way that the resultant approxi-
mate Hamiltonian can be split into-Hy and H' which are both symmetrical with respect to
all nucleon coordinates. As a consequence, the corresponding Lippmann-Schwinger
equation also becomes symmetrical in these coordinates and it is possible to define a
complete set of antisymmetrized orthonormal functions in terms of which the wave
function of the system can be expanded. It should be emphasized, however, that this
particular reaction theory has a rather limited domain of applicability. It can be used to
study elastic, inelastic, and charge-exchange scattering of nucieons, but not processes in
which two or more composite particles are involved in either the initial or the final state.

In summary, we wish to make the following remarks. In the usual reaction theories
where one splits H into Hy and H’, an orthonormal set of basis functions is defined. in
which the wave function of the system has to be expanded. By this procedure the theory
is made so inflexible from the beginning that it is in general not possible to introduce the
incoming and reaction channels in a symmetrical manner into the integral equation which
describes the dynamical behaviour of the system. This has the consequence that one can
conveniently introduce only the boundary conditions belonging either to the incoming
_ channel or to the outgoing channel, but not both together. A practical limitation resulting
from this is that rearrangement processes cannot be considered. For the treatment of such
processes, one has to find a method which allows the handling of the incoming and outgo-
ing channels in a symmetrical way.




2. Reformulation of the Schrodinger Equation

A symmetrical treatment of the incoming and outgoing channels can be done in a
basically very simple way by formulating the Schrodinger equation (1.1) in the form of
a projection equation (see, e. g., ref. [WI 72})

<,6w1u+ﬁi%|w>=o. | | @

As usual, the Dirac bracket denotes the integration over spatial coordinates and the
summation over spin and isospin coordinates. If § W represents a completely arbitrary
variation of W at a given instant t in the complete Hilbert space, then eq. (2.1) implies
that the vector

(neh 2)1w)

must be orthogonal to any arbitrary vector in this space. This evidently will be the case
only if ¥ obeys eq. (1.1). Therefore, eq. (2.1) is merely another formulation of the time-
dependent Schrodinger equation. However, as we shall see later, eq. (2.1) does allow us
to treat the incoming and outgoing channels in a symmetrical way.

If we write W as _
¥ = y exp(- iEt/h) ‘ : (22)

_ and insert it into eq. (2.1), we obtain the txme-mdependem Schrodmger equation
formulated as a projection equation

B YlH-Ely)=0. . ' (2.3)
As has been mentioned previously, we can also use this simpler edﬁation as the starting

point for our future considerations.

We shall now briefly discuss some general properties of eq. (2.3), which we shall need
at a latér stage. Let us make for ¢ the ansatz :

lJ’=_Zar‘})r".'J}'pq)pdpzSak‘l’k, , (24

where the coefficients a, and a,, are the discrete and continuous linear variational
amplitudes for the trial functions ¢, and ¢y, respectively. By substituting eq. (2.4) into.
eq. (2.3) and using the fact that § y is obtained by an arbitrary variation of the discrete
and continuous amplitudes ay,i.e., ‘

8y = § Sag ¢y, @29
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we obtain the following set of coupled equations: ,
(¢ [H-E| S 2 ) =0, (26)

where the subscript n takes on both discrete and continuous values. If the trial functions

¢y form a complete set, then the solutions of the coupled equations (2.6) are identical to
the solutions of the time-independent Schrédinger equation. We should emphasize that

the functions ¢, must be linearly independent, but need not be orthogonal to each other.
This point is of great importance for our future considerations, because only by choosing

in general a nonorthogonal set of functions can one expect to introduce the incoming

and outgoing channels symmetrically into the theory. At the same time, the relaxation of
the orthogonality requirement also gives us some extra flexibility to choose the set of-
functions ¢y in the most appropriate manner according to the problem under consideration.

If we substitute eq.(2.4) into the time-dependent projection équation (2.1), then we .
obtain a set of coupled equations similar to eq. (2.6) in the stationary case. The only

modification is that the quantity E is replaced by the operator — ﬁaﬁ which acts on the
now time-dependent amplitudes ay.

In contrast to the trial fiinctions qbk , the eigensolutions of eq. (2 .6) are always iutually
orthogonal, if all degeneracies are removed. This will be the case even if we restrict the
number of variational amplitudes in eq. (2.4). In order to prove this orthogonality
property, we coﬁsider the following normalized solutions:

V=S o o, | @)
¥m = § ap ok, | , | (2.7b)

which belong to the sets of equations
(¢alH-E;1yp =0, _ . (2.8a)
(¢l H-Eplypmd=0. - (2.8b)

Upon multiplying eq. (2.8a) by aT**, eq. (2.8b) by ai,' and summing over all possible
values which the index n can assume, we obtain

(UmH=El§y) =0, . (2.92)
(Y H-Eplypm)=0. . | (2.9b)

If we now subtract the complex conjugate of eq. (2.9b) from eq. (2.9a), then, due to the
hermiticity of H, we obtain the following relations for properly normalized functlons

Vrand ¥y
CYrlm? =81, m), g - (2.10)
i IH 1Y) = Y IH I =B, 8 (1 m), @.11)
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8 . 2. Refarmulation of the Schrodinger Equation

where the symbol 8 (!, m) represents the Kronecker symbol for discrete values of / and
the Dirac § -function 8§ (/ —m) for continuous values of /.

Equations (2.10) and (2.11) show that even when we restrict the number of linear
variational parameters, i.e., we only work in a subspace of the Hilbert space, we still
obtain the resultt that (i) any two solutions {; and V¥, are orthonormalized, and (ii) )
in this subspace the Hamiltonian H can be‘represented by a real diagonal matrix. These
results have the consequence that the normalization of the time-dependent solution of
eq. (2.1) remains constant in time. From this it follows that the conservation law of
probability current, or in other words the unitarity of the S matrix, is still satisfied,
even if we work with a'set of functions which does not span the entire Hilbert space.

For numerical calculations, one has to limit the number of linear variational parameters,
i.e., the number of trial functions ¢ in the ansatz (2.4). It is reasonable 1o neglect all
those terms in eq. (2.4) which can be expected to have a very small amplitude in the - -
final solution of eq. (2.3).TT Of course, the decision as to which terms will be unimportant
is not easy to make and will have to rely on one’s experience and physical intuition
about the system under investigation (see Chapter 3). Indeed, we know at present of
no rigorous rule which could help us in predicting the relative magnitudes of the various

. variational amplitudes. Therefore, we shall give here only a possibly useful hint which
results from the following crude considerations. Let us assume that by some means,
we have arrived at a normalized trial function ¢,, yielding an energy expectation value
fairly close to the eigenvalue of interest. To this function ¢, we now add another '
normalized trial function ¢, which, for simplicity, will be assumed to be orthogonal to
#,. A simple calculation then shows that the variational amplitudes a and b satisfy the
following relation: '

QN _ <¢b LHI(ﬁa) ,
a " (¢ |Hlgy) — (paiHlgy)

(2.12)

From this one sees that bjal will be very small if the energy overlapping integral

I¢ ¢y, | HI ¢,) | is much smaller than the energy difference [(¢y | Hlgp) — (¢,IH1¢,) ). In
the case where ¢, and ¢, are not entirely orthogonal, a similar consideration will be
harder to make, but we do not expect this result to change in any essential way.

i ‘St {ctly speaking, the proof given here is valid only if ali functions ¢k are finite-normalizable and
hence, belong toa mathematlcally exact Hilbert space. We shall not discuss the mathematical
complications which will appear in our proof if the functions belong partially to a more extended
function space (e. g., Banach space), because for all physical situations which we shall describe, we
can in principle always work with functions which are noimalizable. For practical considerations
it is often more convenient to use wave functions ¢x which belong to a function space more -
extended than the Hilbert space.

Tt It should be mentioned that one has to be very careful in omitting such terms, because it can
happen that the sum of many ¢ with smali amplitudes ag could contribute significantly to the
wave function y. For instance, it is well known that the addition of many small terms does play
an important role in connection with the saturation character of the nuclear forces.



3. Dlscusslon of the Basis Wave Functlons for
Nuclear Systems

3.1. General Remarks -

The considerations given so far have been quite general. They can be applied not only
to nuclear physics, but also to atomic physics, solid-state physics, and other fields of
quantum mechanics. The distinction between these different fields lies in the choice of the
basis wave functions in terms of which the wave function of the considered physical
system is most conveniently expanded. In this chapter, we shall discuss extensively how
to choose the proper basis-wa've-function set for use in nuclea.r-’physics problems.

The guiding idea for the choice of a pmper basis-wave-function set is that the wave
function of the system or process which one wishes to describe can be represented by a
linear superposition of a small number of terms in this basis sot. In this way one.obtains
a satisfactory description of the physical situation, which is still dtienable to quanutatwe
study with present-day computatlonal facilities. More importantly, as we shall see later, =~ .
a good choice of the basis wave functions is also indispensable for the purpose of obtaining
a physical insight into the bound-state structure and reactxon mechanisms in a many-
particle system.

A proper choice of the basls wave functions depends strongly on the general charac-

* fteristics of the interaction forces between the particles of which the considered system is
composed. In atomic physics, for instance, the interacting atoms can be polarized over .
large distances due to the long-range nature of the Coulomb interaction. The basic-wave-
function sets for atomic systems have therefore to be chosen such that these polarization
effects can be included in the descnptlon of these systems by a relatively small number of
basis functions. In nuclear physics, the situation is quite different. Here the long-range
polarization effects on the nuclear participants by the Coulomb forces can be neglected in
a good approximation, because the nucleons in a nucleus are tightly bound as a consequence
‘of the great strength of the short-ranged nuclear forces. Therefore, in the choice of basis
wave functions for nuclear problems, the emphasis should be on the short-range character -
of the nuclear interaction and other relevant factors to be discussed in section 3.2, rather
than on the presence of the Coulomb repulsion.

3,2.- Qualitative Discussion of f)lu;ter Correlations

For nuclear systems two factors predominate. in deteymining the basis wave functions:
the character of the nuclear forces and the influence of the Pauli exclusion principle. The
important facts about the phenomenologlcal nuclear forces are that they are short-ranged
(> 2 fm), are strongly’ attractive over most of this range, but at short distances ($0.5 fm) -
. become strongly repulsive. The effect of the Pauli principie in a syste}n of nuclear dimension .
is to allow low-energy nucleons to move relatively undisturbed ‘throughout the nuclear
volume, because these nucleons may not be scattered into other already occupied energy
levels. S
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