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Fracture Behavior of Commercial Al-Li Alloys

R. C. DORWARD
Center for Technology, Kaiser Aluminum Pleasanton,
CA 94566, USA

ABSTRACT

The fracture characteristics of Al-Li~X alloys are reviewed, with specific
reference to the effects of microstructure on toughness and the failure
process, Fracture is strongly affected by grain structure, temper
condition, and test temperature and orientation. Considerable work remains
to elucidate the factors that appear to be associated with brittle grain
boundary fracture in near-peak-aged conditions: strain localization, grain
boundary precipitates, weak PFZ's, and alkali metal segregation.

KEYWORDS

Al-Li alloys, fracture, microstructure, cryogenic toughness, grain
boundaries, aging effects.

INTRODUCTION

Until recently, a major impediment to the commercial utilization of Al-Li
alloys was their relatively low ductility and toughness. This problem has
been attributed to a number of factors, including tramp impurities such as
Na, K, H, etc., strain localization and stress concentrations at grain
boundaries due to planar slip, weak precipitate free zones, and coarse
grain boundary precipitates (Starke et al, 1981; Vasudevan et al, 1985).
Alloys with respectable properties have recently been developed by grain
size and shape control, minimizing impurity contamination, utilizing
underaged tempers, and most importantly, the addition of alloy elements
such as copper and magnesium that result in co-precipitation of other age
hardening phases (Sanders and Niskanen, 1981; Lewis, 1980; Miller et al,
1984; Peel et al, 1984). However, aging to peak and overaged tempers still
generally leads to brittle intergranular (or intersubgranular) fracture
(Vasudevan et al, 1985; Dorward, 1986a; Vasudevan and Doherty, 1987).
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This paper addresses the specific effects of grain structure, aging
conditions, and test direction and temperature on the fracture
characteristics of Al-Li alloys, with most attention given to commercial
alloy AA 2090 (nominally Al1-2.7%Cu-2.2%Li-0.12%Zr).

EXPERIMENTAL OBSERVATIONS

Orientation Effects

Most commercial high-strength aluminum alloys have an elongated, 'pan-cake"
type of grain structure. This is intentional; compared to an equiaxed
grain structure, it generally provides superior mechanical properties and
stress corrosion cracking resistance in the more highly stressed
longitudinal and long-transverse directions. Alloy 2090 is also normally
unrecrystallized in all product forms. Since this grain structure has a
strong mechanical texture, test direction has a dramatic effect on
toughness. As shown in Figure 1, Charpy impact energies of near peak-aged
2090 plate in the L-S and T-L orientations differ by more than an order of
magnitude. The L-S orientation is particularly tough due to the laminated
nature of the material. However, a draw-back of this type of structure is
its relatively low short-transverse (S-L and S-T) properties. For example,
this particular plate had a T-L fracture toughness of 23 MPa/ﬁ~compared to
an S-L value of 13 MPa/m.

Fig. 1. Effect of orientation on the Charpy
impact energy of 2090-T8X plate.
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Orientation effects are also of special importance in products with non-
uniform grain structures such as forgings and extrusions. The L-T Charpy
impact energy near the edge of a 2090 bar extrusion, for example, is about
twice that at the center.

Aging Effects

As with all heat-treatable aluminum alloy systems, the toughness and
ductility of Al-Li alloys decrease with increasing aging time and/or
temperature, i.e., as the yield strength increases (see Fig. 2). However,
unlike conventional alloys, toughness does not recover upon overaging,

20
15 (- F
J/ ) '
cm 15 - A‘\\\MwnﬁAma
0 “To~o
10 |~ &
T T T---0-0
; Elongation
5 b
| | J 1 1 J
400 450 500 550 400 450 500 550

YIELD STRENGTH (MPa)

Fig. 2. Dependence of impact energy and ductility of
2090 extrusion on temper condition and strength
(triangles-underaged, squared-overaged).

120°C Age
420 MPa YTS
40 MPaym Kie

170°C Age
575 MPa%XTS
11 MPaym KIc

Fig. 3. Effect of temperature on S-L fracture of Al-
2.1Li-2.0Cu-1.0Mg-0.1Zr alloy extrusion.
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although ductility may. As shown in Figure 3, the S-L toughness of an
experimental Al-2.1%Li-2.0%Cu-1.0%ZMg-0.1%Zr alloy extrusion decreased from
about 40 MPay/m to 11 MPa/m as the aging temperature was increased from
120°C to 175°C (and the yield strength increased from 420 to 575 MPa).
Coincident with the decrease in toughness was a change in fracture
morphology, which became smoother and more intergranular. The transition
to intergranular fracture also coincided with extensive subgrain and grain
boundary precipitation at the higher aging temperature.

SEM views of S-L fractures in near peak-aged 2090 plate clearly reveal
inter-subgranular features (Fig. 4), and although the surface appeared
macroscopically brittle, examination at high magnification showed evidence
of local ductility, which was more actually pronounced than in the more
ductile underaged condition. The local ductility is probably associated
with PFZ's which become more pronounced in these alloys as the aging
time/temperature is increased.

Fig. 4. SEM views of S-L fracture in peak-aged 2090
plate.

Microstructural Effects

As shown above, the fracture behavior of Al-Li-X alloys is strongly
dependent on temper condition. The microstructural changes that occur upon
artificial aging include coarsening of &' (Al;Li) and precipitation of
copper and magnesium-containing phases such as 0 (A12Cu), T, (AlZCULi) and
S' (AlZCuMg). The copper-containing precipitates generally nucleate hetero-
geneously on dislocations and low angle sub-boundaries, and their aging
response is therefore accentuated by prior deformation (stretching). In
the peak-aged and overaged conditions, & (AlLi) and T, (A16CuLi3) phases
precipitate on higher angle grain boundaries. The prevalence of ordered &'
in the underaged condition results in strong coplanar slip and strain
localization, which were long associated with the poor ductility and
toughness of Al-Li alloys. However, as noted earlier, the toughness of
this temper condition is actually fairly respectable. Further aging
results in precipitation of semicoherent T, and S' phases which promotes a
more uniform strain distribution upon deformation, and provides a better
strength-toughness combination than observed in the & -strengthened binary
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system. In peakaged and overaged materials, intergranular failure
associated with grain boundary precipitates appears to be the major
fracture mode (Suresh et al, 1987; Yin et al, 1987).

While the qualitative effects of aging on deformation, toughness and
fracture morphology are well known, a complete mechanistic understanding is
lacking. For example, what are the specific contributions of strain
localization and grain boundary precipitation on fracture? Perhaps the two
are inter-related. Figure 5 shows a slip band intersecting a '1‘ﬁ
precipitate at a grain boundary in peak-aged 2090 alloy. The hig
dislocation density at the site suggests that it could lead to fracture
initiation by cavitation as shown by Kenik (1985). A similar mechanism has
been proposed based on large Al (CuFe) constituents (Butler et al, 1985),
which are independent of the aging process.

¢ 5.4 2 e N
s 05 e
b s

Fig. 5. TEM showing intersection of slip band and grain
boundary T, pricipitate in peak-aged 2090 sheet.

In view of the apparent inter-relationships between precipitation, slip
bands, and grain boundaries on the fracture of Al-Li alloys, one would
expect an effect of grain (and subgrain) structure (recrystallized vs.
unrecrystallized, shape, size) on fracture behavior. Today's semi-
commercial alloys all contain zirconium as a grain stabilizing agent, the
potential benefits of which have been recognized for many years
(Fridlyander, 1969). That an unrecrystallized grain structure is
preferable to a coarse-grained recrystallized alternative is not
surprising, at least in perhaps all but the short-transverse (S-L)
orientation. However, recent work indicates that a recrystallized, very
fine-grain structure is most desirable, at least at relatively low strength
levels (Miller et al, 1987).

Subgrain structure can also have a profound effect on toughness and

fracture behavior (Dorward, 1986b). As shown in Figure 6, Kahn tear
specimens machined from the surface of unrecrystallized 2090 sheet (well
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developed subgrains with a relatively high incidence of high angle
boundaries) had lower toughness than the sheet center (less developed
subgrains with lower angle boundaries) especially at higher strength
levels. 1In the peak-aged condition, there were also distinct differences
in the fracture morphologies between the two regions (Fig. 7). Center
fractures were relatively featureless, traversing large numbers of grains
without any significant deflection in direction; the surface morphology was
microscopically rough, the fracture coinciding with subgrain boundaries.
In the underaged condition, both fractures were largely trans-subgranular
and similar in appearance.
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Fig. 6. Near-surface and center toughness of 2090
sheet as measured by Kahn tear strength.

Near-Surface Center

Fig. 7. Fracture cross sections and fractographs from
near-surface and center regions of peak-aged
2090 sheet.

2418



