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Preface

A glance through the contents of éxisting books on holography will show
that scant attention has so far been given specifically to the volume proper-
ties of holograms. It is primarily in the belief that this apparent discrimi-
nation is not wholly justified that we put forward the present work.
Although it was appreciated quite early in the history of holography that
the thickness of the hologram might be of some significance, it was for
some time doubtful whether the additional insight obtained by taking into
account this third dimension could possibly repay the mathematical labour
required. Indeed, we must concede that for many purposes a plane holo-
graphic model is still perfectly adequate. The need to analyse holograms
as volume elements could not be denied, however, as questions concerning
efficiency, superposition and frequency selectivity acquired importance,
and it was then realized that the behaviour of these “volume holograms”
bore close resemblance to well known phenomena in quite different disci-
plines, such as the scattering of light by acoustic waves, the diffraction of
X-rays and electron beams by crystals, and diffraction by surface gratings
in integrated optics. One may thus identify a vast field of study which, in
the absence of a better term, could be called that of “volume gratings”.
In consequence, our approach to holography, and the tools of analysis
which it is our purpose to present, have their origin in earlier work in
related fields, and they continue to be adapted to find application in new
ones, for example four-wave mixing and surface acoustic wave reflective-
array devices. We wish to emphasize that it is not the aim of our book to
review this whole subject, our primary interest lying in the theory and
applications of volume holograms, and in the materials used for recording
them, since the latter will determine their properties. We shall, neverthe-
less, while employing the terminology appropriate to holography, attempt
to keep the treatment general, and to stress the similarity to other types

v
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of volume gratings when the opportunity arises. In particular, in the chapter
devoted to applications, we shall, besides reviewing volume holographic
displays and optical elements, include also applications of grating devices
based on acousto-optic and electro-optic interaction, all kinds of integrated
optics structures, and brief notes as well on purely acoustic Bragg devices,
multilayers and four-wave mixing.

The audience we have in mind could be broadly divided into the following
categories:

(1) final year undergraduates with some knowledge of optics and electro-
magnetic theory, for whom a gradual introduction is provided and
who should be able to read the first five chapters without difficulty;

(2) graduate students who are working in the field;

(3) research workers in various branches of volume holography interested
in the statc of the art;

(4) research workers in the neighbouring fields who want to learn about
the potential of volume gratings in general.

We wish here to thank our colleagues Cass Benlarbi, Paul Bloch, Mike
Jordan, Rick Kerle, Martin Owen, Ted Paige, Philip Russell, Dilano
Saldin, Colin Sheppard, Richard Syms, Andrew Ward and Tony Wilson
who helped to shape the ideas presented in this book. Our thanks are also
due to Eric Ash and Antonio Leite of University College, London, and
Nick Phillips of Loughborough University for many helpful discussions.
We are particularly indebted to Rudi Kompfner, one of the most imagin-
ative engineers of this century, without whose initiative we would have
never moved into this exciting field, and who gave constant encouragement
to our various endeavours until his untimely death.

We should further like to acknowledge our debt to Professor A. Korpel
of Jowa University and Dr. J.-P. Huignard of Thomson-CSF for sending
us original photographs of their experimental results. The credit for the
illustrations should go to Mrs. J. Takacs. Finally, one of us (D.J.C.) would
like to thank the Warden and Fellows of Merton College for the support
of a Junior Research Fellowship.

L. SOLYMAR
D. J. CookE
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1 Derivation of the Basic Equations

1.1 Introduction

The study of volume gratings may be regarded as the study of waves in
periodic and nearly periodic media. The waves may be of different kinds,
such as electromagnetic, acoustic and particle waves, each one, strictly
speaking, requiring a different mathematical description. Acoustic waves
are mostly needed in producing the periodically varying permittivity; we
shall have less occasion to talk about their properties in periodic media.
Electron diffraction is, of course, very extensively used in the study of
materials and the properties of electron waves are based on an equation
(Schrodinger’s) which looks quite different from the others. Nevertheless,
in the case of stationary processes, there is hardly any difference between
the mathematical description of the various waves. Considering further
that our main interest is in the optical region concerning various manifes-
tations of volume holography, and that X-rays also happen to be electro-
magnetic waves, we feel it will be sufficient to restrict our introduction to
the relevant properties of electromagnetic waves.

Our aim is to derive the expressions needed later. The treatment will,
of necessity, be brief. It cannot provide a complete introduction; it can
serve only to refresh the memory of the reader, and to give ready access
to formulae.. The book likely to prove most useful in providing more details
is that of Born and Wolf [1], though we shall often refer to a book [2] by
one of the present authors on electromagnetic theory for the simple reason
that we are more familiar with it. ‘ .

We shall start the treatment with Maxwell’s equations in Section 1.2;
the wave equation and Poynting’s theorem are derived in Sections 1.3 and
1.4 and boundary conditions are given in Section 1.5; the plane wave

1

5506418



2 VOLUME HOLOGRAPHY AND VOLUME GRATINGS
solution is discussed in Section 1.6 and the corresponding refraction prob-

lem in Section 1.7, finally, the geometrica! optics approach for a simple
two-dimensional case is presented in Section 1.8.

1.2 Maxwell's equations

We start with Maxwell’s equations. These can be found in any textbook
on electromagnetic theory [2], usually in the following form

oD
VAH =]+ -—— (1.1

at

B

VAE = — — 1.2
' at (1.2
V.D=p (1.3)
V.B=0 (1.4)
D=¢E : (1.5)
B =uH (1.6)
where H = magnetic field strength, E = electric field strength, B = magnetic
flux density, D = electric flux density, J = current density, p = charge
density, 4 = permeability, ¢ = permittivity and V is the differential vector

operator.
We shall now introduce ¢, the relative permittivity {also called the

relative dielectric constant) and u,, the relative permeability, with the
relations

£= &g+ and L= told, (1.7
In SI units, the values of g and u are given as
& =885x 10 2AsV ' im !, u=4rx1077VsA !lm! (1.8)

The relative permittivity and permeability are characteristic of a given
material. In free space, ¢ = u, = 1.

1.3 Derivation of the wave equation

We shall now eliminate the variables H, B and D from Equations (1.1)-
(1.6). Taking the curl of Equation (1.2) and using Equations (1.1), (1.5)
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and (1.6), we get

3 aJ  E
= - —_— /\ = - .__+ - .
VA(VAE) o (VAH) U (at £ azl) (1.9)
leading to ,
VA(VAE) + Eu-———aE— —H —~a'] (1.10)

In all cases of interest we shall be concerned with harmonic time variation
at an angular frequency w. Hence the form exp(jwt) is assumed, leading
to the modified form of the above equation,

VA(VAE) — w’ueE = —joud (1.11)
We shall further assume that at the frequencies of interest, and for the
materials under consideration, the current density at any given point will
be proportional to the electric field,

J = oE (1.12).

where ois another material constant known as the conductivity. Substituting
Equation (1.12) into (1.11), the fatter may be written in the form

VA(VAE)+ YE=10 (1.13)
where
v = jopo — wue (1.14y
Equation (1.13) is one of the convenient forms from which the study of
volume gratings could start: we shall use it in Chapter 9, where the full
vectorial problem will be treated. For most other problems, it is more
convenient to use the vector relation

VA(VAE) = V(V.E)—VE (1.15)

What can we say about V. E7 In materials where no free charge is permitted
one might be tempted to take it equal to zero. However, some care must
be exercised, because in our problems ¢ will be a function of the spatial
coordinates. Hence the mathematical relationship to consider in the absence
of free charge is

V.D=0=¢V.E+ E.Ve. (1.16)

Thus V.E will not be zero provided E.Ve is finite. There is however a
wide range of problems (actually including most of those treated in the
present book) where ¢ varies only in the plane perpendicular to the direction
of E, leading to E.Ve=0 and consequently V.E =0. Equation (1.13)
then takes the form

VE-vyE=0 (1.17)
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Each of Equations (1.10), (1.13) and (1.17) is usually referred to as the
wave equation.

We shall say more about the physical significance of y in Section 1.6.
Here we shall be concerned with some alternative forms. One way of
expressing v is in terms of a complex dielectric permittivity, which may be
deduced from Equation (1.14) as follows:

. ) . o2
Y= [~ 0’ue + jouo]"” = Jw(uso)”z[& = j w_&)] (1.18)
It is now customary to introduce the following notations,

£ =g, and ¢=— (1.19)
WEy
where € and ¢ are referred to as the real and imaginary parts of the
complex permittivity.
In wave propagation problems, y is usually divided into real ‘and
imaginary parts as

y= a+/‘ﬁ (1.20)

where a and § may be determined by comparing the above equation with
equation (1.14). We shall perform this calculation only for the case where
the conductivity is small, leading to

12 g
= jo(ue)?| 1 - j 2] = ”2[ ] 121
Y = jo(ue) [ | ~iolue) J 5 e (1.21)
whence
1/2

B=wue)* and a= —( 5) (1.22)

We may also relate «a to €’; to the same accuracy, this comes to

Elf

o=13 = B (1.23)

1.4 Poynting’s theorem

The aim is now to derive an expression from Maxwell’s equations which
may serve as the power conservation theorem of electromagnetic theory.

Let us take the scalar product of Equation (1.2) with H, and subtract
from it the scalar product of (1.1) with E. We obtain

D
H.(YAE) —E.(VAH) = —H. —-E a—-—E J (1.24)
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Using a well known vector identity (see, for example, ref. 2) and the
relationship between current density and electric field as given by Equation
(1.12), we may rewrite (1.24) in the form

V.(EAH) = — — [§eE* + uHY| — oF? (1.25)

9
ot
We shall now define

P,=ENH (1.26)

as the Poynting vector representing power density, and
W = eE* + $uH’® (1.27)

as the energy contained in the electric and magnetic fields.
Integrating Equation (1.25) for a volume 1 we get

fv.PddH%j Wdr + ofEZdr: 0 (1.28)

Using Gauss’ theorem [2], the first term in the above equation becomes
ff;APc,.alA (1.29)

which is equal to the net power flowing through the closed surface A of
volume 7. Noting further that the third term in Equation (1.28) represents
the energy dissipated, we may now state the power conservation theorem,
known as Poynting’s theorem, as follows: the net power crossing a closed
surface, plus the rate of change of stored energy, plus the power dissipated,
must be equal to zero. In other words, the power leaving the closed surface
may be different from that entering only if the stored energy changes, or
if some of the power is dissipated.

" Assuming the exp(jwt) time dependence, we need to rewrite Equation
(1.28) in its complex form. We are then interested only in the real part,
which takes the form

fv.PddH 50[ |E|%dt=0 (1.30)

where P, is now redefined as
P; =3 Re(ENH*) (1.31)

and where * denotes the complex conjugate.
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1.5 Boundary conditions

At the boundary of two different media, all our field quantities need to
satisfy certain conditions, a consequence of the differential equations they
must obey. For our purpose it is sufficient to consider the case when there
are neither surface charges nor surface currents present. The boundary
conditions take then the form (2],

nA(E;—E)=0, n.Dy~D)=0 (1.32)

and
nN\(H, - H))=0, n.(B;—B)=0 (1.33)

where n is the vector normal to the boundary surface and the subscripts
1 and 2 refer to the boundary values of the field quantities in media 1 and
2 respectively. In words, the tangential components of E and H, and the
normal ccmponents of D and B, must be conserved across a boundary.

1.6 Plane waves

Where ¢ and o are constants independent of the cocrdinates of the medium,
Equation (1.17) has a simple solution of the form

E =Ey exp(~vy.r) + Egexp(+y.r) (1.34)

where r is the radius vector of an arbitrary point, ¥ is a constant vector
whose modulus is equal to y and Eyy, E; are constant vectors perpendicular
to .

The significance of the direction of ¥ may be appreciated by noticing
that the phase of the exponents in Equation (1.34) depends upon the scalar
product y.r. Since ¥ is a constant vector, the scalar product is constant for
those values of r which lie in a plane perpendicular to ¥, as shown in Figure
1.1. Hence the phase is constant in that plane and we are entitled to refer
to the solution as a plane wave, having a plane wavefront.

For the interpretation of the modulus of y we shall, for simplicity,
consider a one-dimensional model in which

0 0
— == 0 (1 35)
dy 9z
That is, there is variation only in the x direction. Furthermore, we shall
return to the notation which includes the temporal variation, and write the

exponents of Equation (1.34) as

exp(jor  yx) = explj(wt — )] exp(¥ ax) (1.36)
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Choosing the upper sign, we may clearly see that the wave is attenuated
in the positive x direction, with a coefficient &. Hence, we may term a the
attenuation constant. The phase is constant when

wt — Bx = const. (1.37)

whence it may be deduced that the wave propagates in the positive x

)Y

\
\ wavefront

z
Figure 1.1 Diagram showing that the scalar product y.r represents a planar
wavefront.
direction, and the speed of the wave is equal to
dx ® 12
— = v =—=(ug) 1.38
e (1.38)

In a vacuum, €= g, u= U, and the speed of the wave is
c = (uoge) % =3-00 x 108ms! (1.39)

For the materials of interest, the magnetic permeability is always equal
to w, but we may of course encounter a wide range of dielectric
permittivities.

Introducing n, the refractive index, with the definition

n= ()" (1.40)

the speed of the wave in a medium of permittivity &, is equal to
¢ ¢
()7 n

The spatial period of the wave, calied the wavelength, is denoted by A
which is related to § by the simple formula

v (1.41)

1=t (1.42)

B
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Since f characterizes the propagation of the wave. it is usually referred
to as the propagation constant. In vectorial form, B8 (pointing in the same
direction as ¥) is called the wave vector.

In free space we shall use the notation A= 4, and 3= f.

Returning now to the lower sign in Equation (1.36), it may be shown
by the preceding arguments that it represents a wave propagating in the
negative x direction.

1.7 Refraction of plane waves at plane boundaries

We shall assume in this section that both media are lossless (¢ =0) and
a monochromatic wave of frequency w, with electric polarization parallel
to the interface, is incident at an angle ¢, from medium 1 upon medium
2, as shown in Fig. 1.2. Part of the incident wave will be reflected and part
of it transmitted into medium 2, where it will propagate at an angle 6,.

. ane
b

Figure 1.2 Schematic representation of the reflection of plane waves (electric field
vector parallel to the interface) at the boundary of two different media.

Assuming that the angle of reflection is the same as the angle of incidence,
the three wave vectors may be expressed as follows:

Bi.inc = (pog)) " (ic cos 8) + i, sindy) (1.43)
Bi.ren = 0{pog1)"(—i, cosB; + i, sin 6;) (1.44)
B2.rans = 0(Uo€2) (i cos 0y + i, sin 6,) (1.45)

where i, and i, are unit vectors in the x and y directions respectively. The



