Linear N etwork Optimization:
Algorithms and Codes-

Linear Network Optimization:
Algorithms and Codes

DiMITRI P. BERTSEKAS

The MIT Press
Cambridge, Massachusetts
London, England

)

© 1991 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Bertsekas, Dimitri P.
Linear nctwork optimization : algorithms and codes / Dimitri P.
p. cm.
Includes bibliographical references and index.
ISBN 0-262-02334-2
1. Network analysis (Planning). 2. Mathematical optimization.
3. Algorithms. 1. Title.
TS7.85.B43 1991

658.4'032-dc20 91-27588

CIp

Preface

Linear network optimization problems, such as shortest path, assignment, max-flow,
transportation, and transhipment, are undoubtedly the most common optimization
problems in practice. Extremely large problems of this type, involving thousands and
even millions of variables, can now be solved routinely, thanks to recent algorithmic
and technological advances. On the theoretical side, despite their relative simplic-
ity, linear network problems embody a rich structure with both a continuous and a
combinatorial character. Significantly, network ideas have been the starting point for
important developments in linear and nonlinear programining, as well as combinatorial
optimization.

Up to the late seventies, there were basically two types of algorithins for linear
network optimization: the simpler method and its variations, and the primal-dual
method and its close relative, the out-of-kilter method. There was some controversy
regarding the relative merit of these methods, but thanks to the developmerit of effi-
cient implementation ideas, the simplex method emerged as the fastest of the two for
most types of network problems.

A number of algorithmic developments in the eighties have changed significantly
the situation. New methods were invented that challenged the old ones, both in
terms of practical efficiency and theoretical worst-case performance. Two of these
methods, originally proposed by the author, called relazation and auction, will receive
a lot of attention in this book. The relaxation method is a dual ascent method
resembling the coordinate ascent method of unconstrained nonlinear optimization that
significantly outperforms in practice both the simplex and the primal-dual methods for
many types of problems. Auction is a form of dual coordinate ascent method, based on
the notion of e-complementary slackness and scaling ideas. This algorithm, together
with its extensions, has excellent computational complexity, which is superior to that
of the classical methods for many types of problems. Some auction algorithms have
also proved to be very effective in practice, particularly for assignment and max-flow
problems. .

ix

Preface

‘One of the purposes of the book is to provide a modern and up-to-date syn-
Wesis of old and new algorithms for linear network flow problems. The coverage is
focused and eelective, concentrating on the algorithms that have proved most suc-
eessful in practice or otherwise embody important methodological ideas. T.WO fu_n-
damental ideas of mathematical programming are emphasized: duality and zterat.we
cost improvement. Algorithms are grouped in three categories: (a) primal cost im-
pv’%vement methods, including simplex methods, which iteratively improve the primal
cost by moving flow around simple cycles, (b) dual ascent methods, which iteratively
improve the dual cost by changing the prices of a subset of nodes by equal amounts,
and (c) auction algorithms, which try to improve the dual cost approximately along
coordinate directions.

The first two classes of methods are dual to each other when viewed in the
context of Rockafellar’s monotropic programming theory [Roc84]; they are based on
cost improvement along elementary directions of the circulation space (in the primal
case) or the differential space (in the dual case). Auction algorithms are fundamentally
different; they have their origin in nondifferentiable optimization and the e-subgradient
method-in particular {BeM73].

. A separate chapter is devoted to each of the above types of methods. The
introductory chapter establishes some basic material and treats a few simple problems
such as max-flow and shortest path. A final chapter discusses some of the practical
performance aspects of the various methods.

A second purpose of the book is to supply state-of-the-art FORTRAN codes
bas. ! on some of the algorithms presented. These codes illustrate implementation
techniques commonly used in network optimization and should be helpful to practi-
tioners. The listings of the codes appear in appendixes at the end of the book, and
are also available on diskette froff-the author. I arn thankful to Giorgio Gallo and
.Stefano Pallotifio who gave me permission to include two of their shortest path codes.

The book can be used for a course on network optimization or for part of a course
on introductory optimization; such courses have flourished in engineering, operations
research, and applied mathematics curricula. The book contains a large number of
examples and exercises, which should enhance its suitability for classroom instruction.

I was fortunate to have several outstanding collaborators in my linear network
optimization research, and I would like to mention those with whom I have worked
extensively. Eli Gafni programmed for the first time the auction algorithm and the
relaxation method for assignment problems in 1979 and assisted with the computa-
tional experimentation. The idea’ of e-scaling arose during my interactions with Eli
at that time. Paul Tseng worked with me on network optimization starting in 1982.
Together we developed the RELAX codes, we developed several extensions to the

"basic relaxation methcd and we collaborated closely and extensively on a broad va-
‘flety of other subjects. Paul also read a substantial part of the book, and offered
several helpful suggestions. Jon Eckstein worked with me on auction and other types
of network optimization algorithms starting in 1986. Jon made several contributions
s to the theory of the e-relaxation method, and coded its first implementatior. Jon
also proofread parts of the book, and his comments resulted in several substantive

Preface

improvements. David Castafion has been working with me on auction slgorithms for
assignment, transportation, and minimum cost flow problems since 1987. Much of our

joint work on these subjects appears in Chapter 4, particularly in Sections 4.2 and ™
4.4. David and I have also collaborated extensively on the implementation of various .
network flow algorithms. Our interactions have resulted in several improvements in |

kS
Y

the codes of the appendixes. 3
Funding for the research relating to this book was provided by the National
Science Foundation and by the Army Research Office through the Center for Intelligent
+ Control Systems at MIT. The staff of MIT Press worked with professionalism to
produce the book quickly and efficiently.

C’ontents

Preface ix

1. Introduction 1
1.1. Problem Formulation 1
1.1.1. Graphs and Flows . 2
1.1.2. The Minimum Cost Flow Problem 10
1.1.3. Transformations and Equivalences 14
1.2. Three Basic Algorithmic Ideas 20
1.2.1. Primal Cost Improvement 20
1.2.2. Application to the Max-Filow Problem ~ The Max-Flow/Min-Cut '

Theorem 24
1.2.3. Duality and Dual Cost Improvement 33
1.2.4. Auction 42
1.2.5. Good, Bad, and Polynomial Algorithms 51
1.3. The Shortest Path Problem ' 60
1.3.1. A General Single Origin/Many Destinations Shortest Path Method 62
1.3.2. Label Setting (Dijkstra) Methods 68
1.3.3. Label Correcting Methods 75
1.3.4. Single Origin/Single Destination Methods 77
1.3.5. Multiple Origin/Multiple Destination Methods 81
1.4. Notes and Sources 88’

2. Simplex Methods 91
2.1. Main Ideas in Simplex Methods o , 92
2.1.1. Using Prices to Obtain the In-Arc 97
2.1.2. Obtaining the Qut-Arc 101
2.1.3. Dealing with Degeneracy 104
2.2. The Basic Simplex Algorithm 109
2.2.1. Justification of the Simplex Method 110

2.2.2. Choosing the Initial Strongly Feasible Tree - The Big-M Method 111.

viti

2.3. Extension to the Problem with Upper and Lower Bounds
2.4, Implementation Issues'
2.5. Notes and Sources

3. Dual Ascent Methods
3.1. Dual Ascent
3.2. Primal-Dual (Sequential Shortest Path) Methods
3.3. The Relaxation Method
3.4. Implementation Issues
3.5. Notes and Sources

4. Auction Algorithms
4.1. The Auction Algorithm for the Assignment Problem
4.1.1. The Main Auction Algorithm
4.1.2. The Approximate Coordinate Descent Interpretation
4.1.3. Computational Aspects ~ e-Scaling

Contents

122
125
129

133
‘133
138
153
163
165

167
167
168
172
172

4.2. Reverg Aucticn and Inequality Constrained Assignment Problems 177

4.2.1. Auction Algorithms for Asymmetric Assignment Problems
4.2.2. Auction Algorithms for Multiassignment Problems

4.3. An Auction Algorithm for Shortest Paths

4.3.1. Algorithm Description and Aualysis

4.3.2. Efficient Implementation - Forward/Reverse Algorithmn
4.3.3. Relation to Naive Auction and Dual Coordinate Ascent

181
188
194
197
207
211

4.4. A Generic Auction Algorithm for the Minimum Cost Flow Problem 222

4.5. The ¢Relaxation Mcthod
4.6. Implementation Issues
4.7. Notes and Sources

5. Performance and Comparisons .
5.1. Shortest Path Problems
5.2. Max-Flow Problems
5.3. Assignment Problems
5.4. Minimum Cost Flew Problems
5.5. Sensitivity Analysis

Appendixes
A.1. Problem Generator and Conversion Codes
A.2. Shortest Path Codes
A.3. Relaxation Code - .
A.4. Auction Codes for Assignment Problems -
A.5. Combined Naive Auction and Sequential Shortest Path Code
A.6. Max-Flow Codes '
A.7. e-Relaxation Codes

References
Index

235
241
242

. 245
246
247
249
250
250
253
254

- 262
279
280
305
314
331

343
357

Introduction

1.1

PROBLEM FORMULATION

This book deals with a single type of network optimization problem with

"linear cost, known as the transshipment or minimum cost flow problem. In

this section, we formulate this problem together with several special cases.
One of the most important special cases is the assignment problem, which
we will discuss in detail because it is simple and yet captures most of the
important algorithmic aspects of the general problem.

Example 1.1. The Assignment Problem

Suppose that there are n persons and n objects that we have to match on a
one-to-one basis. There is a benefit or value a;; for matching person ¢ with
object 7, and we want to assign persons to objects so as to maximize the total
benefit. There is also a restriction that person i can be assigned to object j
only if (3, 7) belongs to a set of given pairs A. Mathematically, we want to
find a set of person-object pairs (1, ji), ..., {n, jn) from A such that the objects
Jiy. .., Jn are all distinct, and the total beneﬁt ST, ai,, is maximized.

The assignment problem is important in many practical contexts. The
most obvious ones are resource allocation problems, such as assigning em-
ployees to jobs, machines to tasks, etc. There are also situations where the
assignment problem appears as a subproblem in various methods for solving
more complex problems.

Introduction Chap. 1
We may associate any assignment with the set of variables {z;; | (¢,7) €

A}, wher. z;; = 1 if person 1 is assigned to object j and z;; = 0 otherwise.
We may then formulate the assignment problem as the linear program

maximize E i Tij

Galea
subject to
Z ziy=1, Vi=1,..n (1)
{ils.5)eA}
Y zy=1, Vj=1,..,n,
{iieA)

0<z;<1, V(i,jeA

Actually we should further restrict Ti; to be either 0 or 1; however, as
we will show in the next thapter, the above linear program has a remarkable
property: if it has a feasible solution at all, then it has an optimal solution
where all z;; are either 0 or 1. In fact, the set of its optimal solutions includes
all the optimal assignments.

Another important property of the assignment problem is that it can be
represented by a graph as shown in Fig. 1.1. Here, there are 2n nodes divided
into two groups: n corresponding to persons and n corresponding to objects.
Also, for every (i, 5) € A, there is an arc connecting person i with object ;.
In the ‘erminology of network problems, the variable z;; is referred to as the
flow of arc (4,7). The constraint Zm(m 43 Tii = 1 indicates that the total
outgoing flow from node i should be equal to 1, which may be viewed as the
(exogenous) cupply of the node. Similarly, the constraint Z(ii(:‘.j) ey Ti5 = 1
indicates that the total incoming flow to node j should be equal to 1, which
may be viewed as the (exogenous) demand of the node.

Before we can proceed with a formulation of more general network flow
problems we must introduce some notation and terminology.

1.1.1 Graphs and Flows

We define a directed graph, G = (N, A), to be a set A of nodes and a set
A of pairs of distinct nodes from N called arcs. The numbers of nodes and
ares of G are denpted by N and A, respectively, and we assume throughout
that 1 <N < oo and 0 < A < 00. An arc (%,7) is viewed as an ordered pair,
and is to be distinguished from the pair (j,7). If (¢,) is an are, we say that
(i,4) is outgoing from node i and incoming to node j; we also say that j is
ant outward neighbor of i and that i is an inward neighbor of j. We say 1h:..
arc (i, 7) is incident to i and to j, and that i is the start node and 7 i= ihe

.11

Problem Formulation

PERSONS OBJECTS

Figure 1.1 The graph representation of an assignment problem.

end node of the arc. The degree of a node i is the number of arcs that are
incident to 1.)

A graph is said to be bipartite if its nodes can be partitioned into two
sets S and 7 such that every arc has its start in S and its end in 7. The
assignment graph of Fig. 1.1 is an example of a bipartite graph, with S and
T being the sets of persons and objects, respectively.

We do not exclude the possibility that there is a separate arc connecting
a pair of nodes in each of the two directions. However, we do not allow more
than one arc between a pair of nodes in the same direction, so that we can refer
unambiguously to the arc with start ¢ and end j as arc (4, j}. This was done
for notational convenience. Our analysis can be simply extended to handle
multiple arcs with start ¢ and end j; the extension is based on modifving
the graph by introducing for each such arc, an additional node, call it n,
together with the two arcs (i,n) and (n, j). The codes in the appendixes can
handle graphs that have multiple arcs between any pair of nodes in the same
direction, without the above modification.

Paths and Cycles

A path P in a directed graph is a scquence of nodes (ni,n2,..:,n;) with
k > 2 and a corresponding sequence of k — 1 arcs such that the ith arc in the
sequence is either (n;,7:41) (in which case it is called a forward arc of the path):
or (ni+1,n:) (in which case it s called a backward arc of the path). A path
is said to be forward (or backward) if all of its arcs are forward (respectively,
backward) arcs. We denote by P+ and P- the sets of forward and backward
arcs of P, respectively. Nodes n; and n; are called the start node (or origin)
and the end node (or d.<tination) of P, respectively. -

s Introduction Chap. 1

A cycle is a path for. which sthe,start and end nodes are the same. A
path is said to be simple if it contains no repeated arcs and no repeated nodes,
except that the start and end nodes could be the same (in which case the path
is called a simple cycle). These definitions are illustrated in Fig. 1.2.

Note that the sequence of nodes (n1, ns, . .., ni) is not sufficient to specify
a path; the sequence of arcs is also important, as Fig. 1.2(c) shows. The
difficulty arises when for two successive nodes n; and ni41 of the path, both
(ni,ni+1) and (niy1,m;) are arcs, so there is ambiguity as to which of the two
is the corresponding arc of the path. However, when the path is known to be
forward or is known to be backward, it is uniquely specified by the sequence of
its nodes. Throughout the book, we will make sure that the intended sequence
of arcs is explicitly defined in ambiguous situations.

A graph that contains no simple cycles is said to be acyclic. A graph is
said to be connected if for each pair of nodes i and j, there is a path starting
at i and ending at j; it is said to be strongly connected if for each pair of nodes
¢ and j, there is a forward path starting at i and ending at Jj. For example,
-the assignment graph of Fig. 1.1 may be connected but cannot be strongly
connected. :

We say that G' = (N", A') is a subgraph of G = (N, A) if ¢' is a graph,
N'C N, and A C A. A tree is a connected acyclic graph. A spanning tree
of a graph G is a subgraph of G that is a tree and that includes all the nodes
of G. .

Flow and Divergence

A flow vector z in a graph (N, A4) is a set of scalars {zij | (i,5) € A}. We
refer to z;; as the flow of the arc (4, j), and we place no restriction (such as
nonnegativity) on its valjle. The divergence vector y associated with a flow
vector z is the N-dimensjonal vector with coordinates

Y= Z Tij — Z T, VieN. (1.2)
{7li.5)e A} {il.9e A}
Thus, y; is the total flow departing from node i less the total flow arriving
at i; it is referred to as the divergence of i. For example, an assignment
corresponds to a flow vector = with z;; = 1 if person i is assigned to object
. J and z;; = 0 otherwise (see Fig. 1.1); the assigned pairs involve each person
exactly once and each object exactly once, if the divergence of each person
node i is y; = 1, and the divergence of each object node j is y; = —1.
We say that node i is a source (respectively, sink) for the flow vector
x if g > 0 (respectively, 3 < 0). If y; = O for all i € A , then z is called a
eirculation. These definitions are illustrated in Fig. 1.3. Note that by adding
Eq. (1.2) over all ¢ € N, we obtain

S0
ieN

Sec. 1.1

Problem Formuiation

Start Nodo End Node

(a) A simple forward path P = (ny, np, Ny,).
The path P = (ng. Ny, Ny, Ny . Ng, Ny, Ng) is aiso legitimate;
it is not simple, and it is neither forward nor backward.

Q. (")

-

Set of backward arcs C
Set of forward arcs C* @

(b) Asimp!ecydoc-(n,.nz.n.,n‘)wmdwbnmﬂorwardnorbackwam.

Start Node (n2) @...—-u@ End Node

{c) Path P = (n,, n, Ny, Ny, Ng) with comesponding sequence of arcs
{(ny, ng) (g N), (Rg,). (05, 1y))

Figure 1.2 Illustration of various types of paths. Note that for the path (c)
it is necessary to specify the sequence of arcs of the path (rather than just the
sequence of nodes) because both (n3,n4) and (n4,n3) are arcs. For a somewhat
degenerate example that illustrates the fine points of the definitions, note that for
the graph of (c), the node sequence

C = (n3, n4,n3)

is associated with four cycles:
(1) The simple forward cycle with

C* = {(ns,n4), (n4,n3)}, € : cmpty.
(2) The simple backward cycle with
C~ = {(n4,n3), (n3,n4)}, C' : empty.
(3) The (nonsimple) cycle with
ct = {(n3,n1)}, C™ = {(ns.ny)}.
(4) The (nonsimple) cycle with
Ct={(nym)}, € ={(nam)}

Note that the node sequence (n3,ny,n3) determines the cycle uniquely if it is
specified that the cycle is either forward or is backward

Introduction Chap. 1
yp =-2 (Sink) p
X2 =2
y1=1 (Source) (1) (4)¥4 =0 (Neither a source nor a sink)

y3=1 (Source)

@)

Yp=0

y3=0

(b) A circulation

Figure 1.3 llustration of various types of flows. The flow in (b) is a circulation

because y; = 0 for all i,

for any divergence vector y.

In applications. a negative arc flow indicates that whatever flow repre-
sents (material, electric current. cte.). moves in a direction opposite to the
direction of the arc. We can always change the sign of the arc flow to positive
as long as we change the arc direction, so in many situations we can assume
without loss of generality that all arc flows are nonnegative. For the devel-
opment of a gencral methodology, however. this device is often cuv ".ersome,
which is why we prefer to simply accept the possibility of negative e flows.

Conformal Decomposition

It is often convenient to break down a flow vector into the sum of simpler
components. A particularly useful decomposition arises when the components
involve simple paths and cycles with orientation which is consistent to that of
the original flow vector. This leads to the notion of a conformal realization,
which we proceed to discuss.

Sec. 1.1

Problem Formulation 7

We say that a path P conforms to a flow vector r if £;; > 0 for all forward
arcs (i,7) of P and z;; < 0 for all backward arcs (i. j) of P, and furth(\rmf)rv
either P is a cycle or else the start and end nodes of P are a source and a sink
of z, respectively. Roughly, a path conforms to a flow vector if it “carrics flow
in the forward direction” - that is, in the direction from the start node to the
end node. In particular, for a forward cycle to conform to a flow vector, all
its arcs must have positive flow; for a forward path which is not a cycle to
conform to a flow vector, its arcs must have positive flow, and in addition the
start and end nodes must be a source and a sink, respectively.

A simple path flow is a flow vector that corresponds to sending a positive
amount of flow along a simple path; more precisely, it is a flow vector z of the
form

a if (i,7) € P+
z;={ —a if(i,j) € P- (1.3)
0 otherwise, :

where a is a positive scalar, and P+ and P- are the sets of forward and
backward arcs, respectively, of some simple path P.

We say that a simple path flow z* conforms to a flow vector z if the
path P corresponding to z* via Eq. (1.3) conforms to z. This is equivalent to
requiring that

0 <z for all arcs (1, §) with 0 < x};,

zi; <0 for all arcs (i, j) with T <0,

and that either P is a cycle or else the divergence (with respect to) of the
start node of P is positive and the divergence (with respect to 2) of the end
node of P is negative.

We now show that any flow vector can be decomposed into a set of
conforming simple path flows. This result, illustrated in Fig. 1.4. turns out
to be fundamental for our purposes. The proof is based on an algorithm that
can be used to construct the constituent conforming components one by one,
Such constructive proofs are often used in network optimization.

Proposition 1.1: (Conformal Realization Theorem) A nonzero flow vector
x can be decomposed into the sum of ¢ simple path flow vectors z!, 72, .. ¢t
that conform to z, with ¢ being at most equal to the sum of the numbers of
arcs and nodes A+ N. If z is integer. then z!, 22, ... 2! can also be chosen to
be integer. If 2 is a circulation, then z!, 22, ... 2/ can be chosen to be-simple
circulations, and ¢ < A.

Proof: We first assume that z is a circulation. Our proof consists of showing
how to obtain from z a simple circulation 2’ conforming to z and such that

0< mjj <y for all arcs (4, j) with 0 < i, (1.4a)

Introduction Chap. 1

Flow = 1

Figure 1.4 Decomposition of a flow vector z into three simple path flows con-
forming to z. The corresponding simple paths are (1,2), (3,4, 2), and (2, 3,4,2).
The first two are not cycles; they start at a source and end at a sink. Consistent
with the definition of conformance of a path flow, each arc (4,) of these paths
carries ‘positive (or negative) flow only if z;; > 0 (or z;; < 0, respectively). Arcs
(1,3) and (3, 2) do not belong to any of these paths because they carry zero flow.
In this example, the decomposition is unique, but in general this need not be the
case.

zi; <xi. <0 for all arcs (4, j) with z;; <0, " (1.4b)
) i 7
Tij = T, for at least one arc (7, 5) with z;; # 0. (1.4c)

Once this is done, we subtract =/ from . We have Tij — xgj > 0 only for
arcs (i,§) with z;; > 0, z;; — z}; < 0 only for arcs (4,5) with z;; < 0, and
xij ~ xi; = 0 for at least one arc (i, j) with z;; # 0. If z is integer, then 2’ and
z — ' will also be integer. We then repeat the process (for at most A times)
with the circulation z replaced by the circulation z ~ z* and so on, until the
zero flow is obtained. This is guaranteed to happen eventually because x — z’
has at least one more arc with zero flow than z.

We now describe the procedure by which z’ with the properties (1.4) is
obtained; sec Fig. 1.5. Choose an arc (¢, j) with z;; # 0. Assume that z;; > 0.
(A similar procedure can be used when z;; < 0.) Construct a sequence of
node subsets Ty, T4, . . ., as follows: Take Ty = {j}. For k =0,1,..., given T,
let

Tivi = {n¢ U::()Tp | there is a node m: € Tk, and either an arc (m,n)

such that z,,, > 0 or an arc (n,m) such that z,,» < 0},

Sec. 1.1

Problem Formulation 9

and mark each node n € Ty with the label “(m,n)” or “(n, m),” where m
is a node of T} such that Tmn > 0 Or Znm < 0, respectively. The procedure
terminates when Ty, is empty. We may view T} as the set of nodes n that
can be reached from j with a path of k arcs carrying “positive flow” in the
direction from j to n.

We claim that one of the sets T} contains node i. To see this, consider
the set U, T} of all nodes that belong to one of the sets T;. By construction,
there is no outgoing arc from UxT; with positive flow and no incoming arc
into U, T} with negative flow. If i did not belong to U,Tk, there would exist
at least one incoming arc into Uy Ty with positive flow, namely the arc (i, j).
Thus, the total flow of arcs incoming to U, T} must. be positive, while the tota!
flow of arcs outgoing from U7} is negative or zero. On the other hand, these
two flows must be equal, since z is a circulation; this can be seen by adding

the equation
Tmn = Z: Tum
{n{(mn)cA} {ni(n,m)c A}
over all nodes m € Uy T}. Therefore, we obtain a contradiction, and it follows
that ‘one of the sets T} contains node i.

We now trace labels backward from i until node J is reached. [This
will happen eventually because if “(m,n)" or “(n,m)” is the label of node n
and n € Ty, then m € Ty, so a “cycle” of labels cannot be formed before
reaching j.| In particular, let “(i1,4)” or “(i,41)” be the label of i, let “(ia,in)"
or “(i1,42)" be the label of i, etc., until a node'i, with label “(iky J)" or “(j,4x)"
is found. The cycle C = (%K, 8k-1, - - -, 41,4, §) is simple, it contains (i,j) as'a
forward arc, and is such that all its forward arcs have positive flow and all its
backward arcs have negative flow (see Fig. 1.2). Let a = ming, yec [Ton| > 0.
Then the circulation =/, where :

a if (i,7) e C+
zi; =14 —a, if(i,j)eC-
0 otherwise,
has the required properties (1.4).

Consider now the case where z is not a circulation. We form an enlarged
graph by introducing a new node s and by introducing for each node i € A an
arc (s,4) with flow z.; equal to the divergence yi of Eq. (1.2). Then (by using
also the fact 3~ \ % = 0) the resulting flow vector is seen to be a circulation
in the enlarged graph. This circulation, by the result just shown, can be
decomposed into at most 4 + N simple circulations of the enlarged graph,
conforming to the flow vector. Out of these circulations, we consider those
containing node s, and we remove s and its two incident arcs while leaving the
other circulations unchanged. As a result we obtain a set of at most A+ N
path flows of the original graph, which add up to z. These path flows also
conform to z, as is required in order to prove the proposition. Q.E.D.

