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General Preface

A LARGE number of mathematics books begin as lecture notes; but, since
mathematicians are busy, and since the labor required to bring lecture notes
up to the level of perfection which authors and the public demand of form-
ally published books is very considerable, it follows that an even larger
number of lecture notes make the transition to book form only after great
delay or not at all. The present lecture note series aims to fill the resulting
gap. It will consist of reprinted lecture notes, edited at least to a satisfactory
level of completeness and intelligibility, though not necessarily to the per-
fection which is expected of a book. In addition to lecture notes, the series
will include volumes of collected reprints of journal articles as current
developments indicate,and mixed volumes including both notes and reprints.

JacoB T.SCHWARTZ
MAURICE LEvy



Preface

THE PRESENT notes, taken from lectures given by Professor Rellich at New
York University in 1953, describe an area which he pioneered, and in which
some of his most striking mathematical work was done. They show the
fruitful interplay, characteristic for Rellich, of abstract operator theory which
penetrating investigations of significant particular examples. In reading these
notes, one comes to exceptionally close witness of the mathematical mind
in the act of creation. It is to be hoped that their reissue serves, in tribute
ito the author, to advance the theory with which they are concerned.

JacoB T. SCHWARTZ

vil
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Introduction

Perturbation methods attempt to solve a given problem by approximating
it by simpler problems whose solutions are more or less explicitly known.

In eigenvalue problems the perturbation method yields numerical results
comparatively quickly provided you are satisfied with approximations of low
order. However, even in problems which appear to be very simple, it might
be difficult to ascertain whether or not the method applied would converge
if continued ad infinitum or to estimate the error incurred by stopping at a
certain order of approximation. Sometimes the method obviously does not
converge—at least not in the usual sense; then there is the problem of trying
to interpret the results computed, if they have any significance at all. The
following examples illustrate the mathematical problems involved in these
questions.

§1. A Small Perturbation Parameter does not mean a Small
Perturbation

We consider the eigenvalue problem
I e~ y(yydy = lu(x), —o0 <x < +o.

By a point eigenvalue we mean any number A for which there exists a (possibly
complex-valued) solution u(x) £ O of this integral equation such that

e o)
j |u}?2 dx < oo. (Integration here is understood to be in the sense of
-~

Lebesgue.) The function u(x) is called an eigenfunction belonging to . We
use the name “point eigenvalue™ rather than just “cigenvalue™ to emphasize
the fact that we do not mean the points of the continuous spectrum (which
happens to be absent in this simple example). It is a simple matter to find all
the point eigenvalues in this example. Suppose A is an eigenvalue; then

u(x) =ce ¥

1 Rellich, Perturbation

1



2 PERTURBATION THEORY OF EIGENVALUE PROBLEMS

where .
c=f e " u(y) dy.

—

Hence

AJ e~ u(x)dx = cf e=2lxl gy = ¢,

- -~ 0

and consequently i =c

If ¢+ 0 then 2 = 1 and ¢o(x) = e~ is an eigenfunction belonging to
A = 1.If ¢ = O then 4 = 0, for otherwise #(x) = 0 which is not possible for
=]

an eigenfunction. Thus every function ¢(x) with ¢(x) £ 0, f |¢|2dx < o0,
@ -0

andj e~'* ¢(x) dx = 0 is an eigenfunction belonging to the point eigen-
-

value 4 = 0. An arbitrary function f(x) withJ | f1? dx < o0 can be “ex-
panded” in the form

-0

S(x) = fodo(x) + ¢(x),
with

fo= | docose ax,
where ¢, and ¢ are eigenfunctions belonging to A = 1 and to 4 = 0, respec-
tively. The point eigenvalue A = 1 is simple (non-degenerate) whereas 4 =0

is of infinite multiplicity.
We now turn to the eigenvalue problem

[ee]
f e -Plyu)dy + exu(x) = u(x), —owo <x< 400,
with € a given real number. Assuming ¢ small, we seek a point eigenvalue
A = Me) and a corresponding eigenfunction u = u (x; £) of the form
Z=10+8}.1+82}sz+"', 2.0:1;

u=go+ ey + 8%, + -, ¢ =e .

If we introduce the abbreviation

Au = jw e~ =Yy dy, Bu = xu(x),
we have o
(A4 + eB) (b + eps + =) = (o + 61y + =) (Po + e1 + +-).
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If the convergence of ¢ + £¢p; + -+« is good enough to permit the term by
term multiplication

(4 + eB) (¢o + ey + +) = Ado + & (Bdpo + APy) + -,

then we obtain the equations:
Apo — Aopo =0,
APy — 2od1 = A1¢0 — Boo,
Apy — dodz = Ar¢0 + 11¢; — By,

.................

.........................

The first equation provides no new information; it is satisfied by 4, = 1,
¢o = e~'*|. The remaining equations are of the form

Ay = dobn=f, n=12..;
consequently we have

(¢0’ Ad)n - 3043”) = (¢Oaf)s

using here the ““inner product”

(g.f) = r 20 £(x) dx.
Evidently -
(¢05 Ad’n) = (A¢O> ¢n)

because the kernel e~!*I=1! of the integral operator A is symmetric in x
and y. Thus

(¢05f) = (¢0a A¢n) - }'0 (¢O’¢n) = 03

and therefore

ln (¢0’¢0) + }'n—l (¢0a¢1) + o+ ;"1 (¢0’¢n—1) - (¢0: B¢n—l) = 0’

n=12....
For n = 1, we find

21 = (¢o, Boo),

or in words:

The first order approximation to the eigenvalue is the mean value of the per-
turbation operator B with respect to the unperturbed normalized eigenfunc-
tion ¢g.
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In our special case we have
0

A =J xe 2l dx =0,

—

The first order approximation ¢,(x) can be determined from the equation
Ady — Aod1 = A1¢o — Boo;
the right hand side is now known. We find

cy e—lxl -, = —x e lxl
where

2 =j e~* ¢ (x) dx,

and thus
¢ = (x + ¢ eI,

Evidently this function is a solution of 4¢, — A,¢, = A1¢o — B, no mat-~
ter what the value of ¢, . If we require that the function u = ¢, + e, + -
be normalized, we must have

1 =(¢o + &1+ -, 00 + @y + -+°),
which gives rise to the following infinitely many equations:
1 = (¢o,%0),
0 = (¢0,¢1) + (91, 90),

In addition we require all the functions ¢y, ¢, ... to be real. Then

0 = (¢o,P1) + (P1,90) = 2(P0,P1)>

and hence
0 = (o> ) = j G+ e e dx = ).
Thus
¢.(x) = x e Ixl,
Since

Az (¢0a¢o) + 11 (‘?50,4’1) - (¢0s B¢1) =0,
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we obtain
}.2 = %‘

Next we use the equation
Aps — Aoy = A0 + 21¢; — B,
which means
e—l:t:lc2 — ¢, = %e-—lxl — x2e-Ixl
where

c; = JW e~ ¥l (x) dx.

Thus
$2(x) = (X + ¢, — P e
From the equation

0 = (¢o,¢2) + (¢1,¢1) + (¢2,¢0)
and the fact that ¢, ¢, , and ¢, are all real, we find

(b0, 62) = —%r xte-2dy = 3.
Hence -
Cy; — % = - %9
. $a(x) = (x* — P e~ ¥,
Thus we obtain
A=1+4e + o,

and

u=e (1 +xe+x2— 3+ ).

Questions: Do these series converge, if we compute successively the coeffi-
cients? Do these series provide a solution of the equation

(44 eB)u=2u
j |ul?dx = 17

-— o0

with

Unfortunately, the answers must be in the negative because our equation

has no (real) point eigenvalue at all if ¢ is a real number not zero. Indeed if a
0

solution u(x) £ 0 withj lu|? dx < oo were to exist, then

—» .
—c = I e~ bl u(y) dy
-
would exist and we should have

—ce ™ 4 exu(x) = du(x).
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Since ¢ and 4 are real, ¢ & 0, it would then follow that

for x + —l— . The singularity at x = i is a pole of order 1. Thenf lul? dx
&

€ —®

< o0 is only possible if ¢ = 0. But ¢ = 0 would imply u«(x) = 0 which is not
possible if # were an eigenfunction. As a matter of fact the spectrum of the
operator A + ¢B is purely continuous.

The reason for the disappearance of the point eigenvalue 4 = 1, present in
A + eBfor e = 0 but vanished for ¢ 4 0 no matter how small |¢], lies in the
fact that the coefficient ex in the perturbation term eBu = exu is never small
in the whole interval —o0 < x < oo unless ¢ = 0.

Suppose, instead of exu, we consider the perturbation term s (x) u where
s(x) is a bounded piecewiset continuous functionin —c0 < x < o0. Then we
deal with the eigenvalue problem

J e -Blu(y) dy + es (D u(x) = u(x), —o0 < x < 0.

Again we set
A=2+edy + >, =1,

u = d)o + 8¢l + e, ¢0 = e-—lxl;

and we successively compute 4,, ¢, ... as before. For example, we find

7 = f T s ey, ¢y = (0) — Ag) e,

-0

Now we can prove that a point eigenvalue 4 = A(¢) exists which can be re-
presented as a convergent power series

A=1+el; + -
for small |g|.

1 A function f(x) is said to be piecewise continuous in a closed bounded interval
a < x < b when f(x) is continuous there with the possible exception of a finite number
of points x; at which lim f(x) and lim f(x) exist and are finite. A function

x-Xx; x=+xy
x<x; x> %y

f(x) is said to be piecewise continuous in an open interval & < x < 8 if it is piecewise
continuous in every closed bounded subinterval of x < x < §.
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Assuming temporarily the existence of a point eigenvalue 4, we have for a
corresponding eigenfunction u the equation

c e 1*l

u(x) = m

where

¢ = J‘ e~ u(x) dx.

If u(x) == O then ¢ + 0; and we obtain the equation

© ~2]xl
1 = € T dx
o A— &5 (X)
Forgetting the heuristic derivation of this equation, we shall solve it for
A = Ae) and find A = 1 + 2,& + --- as a power series convergent for small

l¢]. Suppose this were done. Then for small || the expression A(e) — &s (x)
does not vanish in —o0 < x < o0, and the function

c e—lx|

Me) — &s (x)

u=u(x;e) =

for any constant ¢ is such that
J [#]2dx < 0.
—
Furthermore, for this function # we have

on e 1=bly(y) dy + &s (x) u(x)

_ e—lxl on ce—zlyl dy + ecs (x) e—xl
—o M) —es () AMe) — &5 (%)

ges (x) e 1* _ ce =l

Me) — es(x) - Ae) — &s (x)

=ce W +

= Me) u.

In other words, u satisfies the eigenvalue equation with 2 = A(g). Therefore
M#) is indeed a point eigenvalue.
The only gap that must be filled is the existence of a convergent power
series solution
A=Ae)=1+ ek, + €%y + -
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of the functional equation
@ e—2lx
- f T i
o A— &5 (X)

We make the change of variable u = % to obtain the equation

@ e—2lx|
A
o 1 — ps(x)

If lu| < ZL where s, is an upper bound of [s(x)| for all x, then the inte-
So

grand of the above integral can be expanded into a convergent series and
termwise integration yields

© e—2lxl d i
—dx =1+ a,u"
L, - ps (o) =
with

a, = on e~ 2 [s(o)) dx.

Since |a,| <55, the integrated power series is certainly convergent for
1
lu] < —. Hence
2So © 1
e=u+ ) autt, for |ul < —;
n=1 250
by the reversion theorem for power series,
u=¢&+ &y + -

is convergent for small |e|. Therefore we find

l=i=l+£11+8212+---,
u

again convergent for small ||, which was the statement to be proved. In-
cidentally from 4, = —u,; and

e=(e+ & + ) +ay (e + psg® + )2 + o

we note that 4, = —u,; = a,, i.e.
oo
A =J e~2Ixl g(x) dx
-0

in agreement with our previous computation.
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Thus we have shown: The equation
f e~ =-Uly(y) dy + es (x) u(x) = Au (x)
-

has a point eigenvalue A(¢) which is a regular analytic function of ¢ for small
|} and which tends to 1 as ¢ — 0, provided s(x) is a bounded (piecewise con-
tinuous) function in —o0 < x < oo. The equation has no point eigenvalue
if s(x) = x.

We must always bear in mind that smallness of the perturbation para-
meter ¢ is not sufficient to ensure that an eigenvalue problem (4 + eB) u = Au
has a regular analytic point eigenvalue A = 4, + &1; + --- even though the
unperturbed problem Au = Au possesses the eigenvalue 4,.

Thus the following two questions arise:

(1) What criteria of “smallness” of a perturbation term eBu will in general
guarantee the regular analytic dependence of point eigenvalues and
corresponding eigenfunctions?

(In our example such criteria were the boundedness of s(x)in —o0 < x < ©

and the smallness of |e|.)

(2) If is one such perturbation term the as eBu = &5 (x) u, what is the mean-
ing of the “approximation” computed by formally applying the perturba-
tion method?

The eigenvalue problem just dealt with exhibits the same difficulty as that
which occurs in the wave equation for the Stark effect. E.Schridinger t
applied the first perturbation calculation used in quantum mechanics to
this example. An electron with charge —e moves in the electric field pro-
duced by a nucleus carrying the positive charge Ze. In addiiion, there is im-
posed an external electric field uniform in the direction of the x-axis. In suit-
able units the wave equation in this situation is

2Z
—(Ux + Uy + u;) ——u + exu = Au,
r

where r = (x2 + »* + z2)"/? and ¢ is a measure of the strength of the
external field. The positive integer Z and the real number ¢ are prescribed.
A number 4, is said to be a point eigenvalue if for 4 = 4, there is a (possibly)

+ E.Schrédinger, Abhandlungen zur Wellenmechanik, 1926.
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complex-valued solution u £ 0 of the differential equation such that

J]jw lu(x,y,2)|*dxdydz < 0.

Any such solution u(x, y, z) is called an eigenfunction belonging to 4,.
For ¢ = 0 all the point eigenvalues are known. One of these eigenvalues (the
lowest in fact) is 4, = —Z?2 with a corresponding eigenfunction u (x, y, z)
= e~ ¥. We have indeed

2
_Au_z_zu__——;— d_+£i+iz_ e-—Zr= —2Z2%y.
r dr? r dr r
Z312 _g,

“Normalizing” u we obtain the eigenfunction ¢, = —7 e
7

If & & O the problem is more complicated. We should like to find a solu-
tion of the form

A=Ay + &y + 8%, +++, o= —2Z2
732
u=q¢o+ e + &, + 1, ¢o = -We‘z',
7

hoping that such expansions converge if || is very small. The computation
of 2;,¢,, ... is now more complicated of course. The first order approxima-
tion A, + €4, is immediately obtained, however, because

A = JJJ x¢pZidxdydz =0,
-

for the integrand is an odd function of x. But it is again true that our eigen-
value problem has a purely continuous spectrum if € £ 0. There is no point
eigenvalue A(e) for € + 0, and the meaning of the “approximation” A(e)
= Ay + €4, is not at all clear.

The assertion that for ¢ = O there is a purely continuous spectrum is not
easy to demonstrate. It amounts to proving:

If a complex-valued function u (x, y, z) £ 0 has continuous second deriva-
tives and satisfies the equation

—Au—z—z-u+sxu=lu
r

for some real number ¢ + 0 and some complex number 4, then

fff lu|2dxdydz = .

It would be desirable to give a direct proof of this statement.



