STRUCTURES AND An lntrOdugtipn to
ABSTRACTIONS Computer Science

with Pascal

WILLIAM 1. SALMON

0115831

STRUCTURES AND ABSTRACTIONS

An Introduction to Computer Science with Pascal

i

4990115831

WILLIAM I. SALMON
Univer?&@f~~Umh*““ "“’"‘:” Lol

i
|

o BN
Yit B

CHANGHA {

. motrv §IARAY
UNIERDIT S Bamtid

IRWIN, ., ., -
Homewoodl, L -60430
Boston, MA 02116

This symbol indicates that the paper in
this book is made from recycled paper. Its
fiber content exceeds the racommended
minimum of 50% waste paper fibers as
specified by the EPA.

Dedicated to
the Spirit of Liberal Education,
wherever it survives.

© RICHARD D. IRWIN, INC., 1991

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Cover painting: Paul Klee, Submersion and Separation, 1923
83/4x 11 (22.2 x 27.9); watercolor and gouache

Collection of the Arts Club of Chicago, Arthur Heun Bequest
Reproduced by permission.

Senior sponsoring editor: Bill Stenquist
Project editor: Jane Lightell

Production manager: Irene H. Sotiroff
Designer and compositor: Bill Salmon
Cover designer: Image House, Inc.
Printer: R. R. Donnelly & Sons Company

The programs in this book have been included for instructional use only. They have
been carefully tested but are not guaranteed for any particular use. The author and
the publisher accept no liabilities for the use of the programs.

Library of Congress Cataloging-in-Publication Data

Salmon, W. (William L), 1942—

Structures and abstractions: an introduction to computer science
with pascal / William I. Salmon.

p. cm.

Includes index.
ISBN 0-256-08273-1
1. Pascal (Computer program language) 2. Data structures

(Computer science) 3. Abstract data types (Computer science)
L Title.

QA76.73.P2525 1991
530.1'2—dc20 90-26522

Printed in the United States of America
34567890 DOC 8765432

Preface iii

Preface

A first course in a subject should convey its spirit and ways of
thought. In computer science, the first course should convey models
of computation, design and engineering methods, and criteria for cor-
rectness and usefulness. These should be emphasized from the begin-
ning because they are the scientific and engineering foundations of
the subject. It isn’t enough to teach a particular programming lan-
guage; this would leave students without the tools for solving today’s
complex problems. Considerable classroom experience with a wide
range of students has led me to several conclusions:

Students should write modular programs from the very
beginning of the course. When algorithms are presented
from a hierarchical viewpoint, modular design can be
introduced early and emphasized consistently. There is no
need to unlearn bad habits or to apologize for early efforts.

Modular programming is not difficult for students who
concentrate on it without distractions. Therefore, modularity
should be covered before control structures and most data

types.
Students need explicit techniques for problem solving. When

-explicit techniques are seen frequently in a variety of pro-

gramming situations, they become standard “templates” for
problem solving, and a foundation for creative solutions to
new problems.

The abstractions of computing don’t lend themselves very
well to verbal descriptions. Data structures are visual and
algorithms have motion, and students must be able to picture
both the data structures and the actions that occur in a
program.

Good programs don’t work correctly by luck; they are
engineered so that they have to work. Beginners need simple
techniques to guarantee the correctness of algorithms before
writing programs.

iv Preface

Coverage

Prerequisites

* Recursion is less familiar than iteration, but no more myste-
rious. These two techniques for repetition are equally
important and each illuminates the other. Therefore, recur-
sion and iteration should be taught side-by-side and com-
pared frequently.

This book is intended for introductory computer science courses
emphasizing modern software engineering practice. The illustrative
programming language is Pascal, but Pascal is not the main subject of
the text. The main topics are modularity, hierarchy, abstraction, verifi-
cation, and analysis, as tools for computational problem solving.
These are emphasized constantly, from the very beginning.

Structures and Abstractions satisfies curriculum recommendations
of the Association for Computing Machinery (ACM) and the Institute
of Electrical and Electronic Engineers (IEEE) for a first course in
computer science (CS1). It includes all material recommended by the
ACM for CS1 courses and also introduces material recently recom-
mended by the ACM/IEEE Joint Curriculum Committee for future
introductory courses and by Norman Gibbs and Allen B. Tucker, Jr.,
for the introductory course in liberal arts curricula. Parts Four and
Five of the book overlap the recommended ACM/IEEE curriculum
for CS2 (data structures) courses. A sequel to the present book, to be
entitled Abstractions and Analysis, will be designed specifically for CS2
courses.

The present book provides enough material for a variety of intro-
ductory courses, ranging from a single quarter to two semesters in
length. There is considerable optional material to allow for various
approaches in different teaching situations. A dependency diagram at
the end of this preface shows various paths through the book.

The standard edition of Structures and Abstractions uses (except in
one appendix) only ISO/ANSI Standard Pascal. All examples have
been tested in several typical Pascal environments to ensure that they
run correctly. A separate edition is available for those preferring a
treatment specific to Borland International’s Turbo Pascal®.

The reader is not assumed to have prior programming experience,
but should be computer-literate, with enough experience in mathe-
matics to appreciate the need for rigorous thought and to understand
algebraic proofs. The material has been tested with considerable suc-
cess on several hundred freshmen and sophomores at the University
of Utah over a period of several years. I have found that the best pre-
dictors of success in the CS1 course are skill in mathematical proofs
and word problems and an ability to communicate clearly in writing.

Preface

v

Specific Features

Design and analysis: Structures and Abstractions places heavy
emphasis on the fundamental techniques for proper software engi-
neering, including top-down modular design, bottom-up testing, pro-
cedural and data abstraction, the use of assertions and loop invari-
ants, and elementary running time analysis. Modular, hierarchical de-
sign is constantly emphasized, beginning in Chapter 3 with the very
first program. Chapter 4 introduces I/O procedures for practice in
using parameters. Chapters 5 and 6 then provide a complete treat-
ment of procedures and functions with both value and variable pa-
rameters. There are hardly any monolithic programs in the book.

Style: The book itself reflects the rules of good programming style.
For example, subjects like modularity, procedural abstraction, data ab-
straction, recursion, loop invariants, and dynamic data structures are
introduced by themselves in their own modules, so that the reader can
focus full attention on them. Then each topic is learned “bottom up,”
with a sequence of stepped examples that gradually increase in com-
plexity and abstraction. Like the programs themselves, chapters are short
and modular, divided into short sections with clear goals. The modular
design of the book makes for more chapters, sections, and subsections,
but clearer reading without added length.

Explicit problem-solving techniques: Classroom testing has proven
that students benefit from the presentation and repeated use of explicit
methods for problem solving. Chapter 2 presents eight of the most gener-
ally useful. These techniques are illustrated with a nontrivial example in
Chapter 2, then used repeatedly throughout the following chapters. By
seeing the same techniques applied in different situations, readers
gradually learn to use them.

A spiral, not a “peek-a-boo” approach: Students need to see why the
rules of practice and style are necessary. Structures and Abstractions in-
troduces techniques when they are needed, then uses them persistently
and consistently. The reader never loses sight of a topic while seeing it
unfold, because an important topic is never dropped after being intro-
duced. The gradually deepening and continual exposure to abstraction
deepens readers’ understanding and appreciation of each topic.

vi

Preface

Pedagogical Aids

Chapter outlines and summaries: Each chapter begins with a few
introductory paragraphs connecting the chapter with previous mate-
rial and outlining the topics to be covered. The chapter ends with a
quick summary of the main points that were made.

Visualization: Sequences of execution during procedure calls, itera-
tion, recursion, and other complex actions are animated by sequences of
diagrams. Altogether, there are more than 35 such animations, contain-
ing more than 185 diagrams. In addition, there are hundreds of diagrams
of syntax and data structures—over 370 in all.

Exercises and programming projects: Questions and exercises are
distributed throughout the chapters, after material requiring practice.
Some of these exercises are puzzles that simulate typical debugging
experiences. Major programming projects are found at the ends of the
chapters. Altogether, there are more than 650 problems, occupying 140

pages.
Applications: Important programming issues are illustrated by ap-
plication to typical problems in computer science. These include first

glimpses of many of the kinds of problems to be encountered in later
courses.

Debugging aids: Debugging techniques and examples are discussed
frequently. In addition to standard techniques involving modular testing
and intermediate output, typical interactive debugging tools are de-
scribed. Always, the reader is reminded that it is most important to pre-
vent bugs in the first place, by good engineering practices.

Using the Book in Class

Few CS1 courses will be able to cover all the material in this book, so
advanced topics are presented in a modular fashion that allows for
customization.

Recursion takes a long time to sink in, so it is introduced in Chapter
11 and revisited frequently, with heavy use of animation diagrams like
those used earlier for nested procedure calls. Iteration and recursion are
treated as equally important techniques for repetition, and often both
versions of an algorithm are examined. Instructors preferring to deem-
phasize recursion in their courses can skip some of these sections.

Preface

vii

Abstract data types: Data abstraction is introduced in Chapter 14,
right after arrays. Beginning with Chapter 15 on records, abstract data
types are used in more complex applications involving strings, graphics,
linked lists, trees, stacks, and queues. For those preferring to implement
ADTs by means of units or include files, Appendix H covers these tech-
niques. Instructors preferring to skip ADTs can skip Chapters 14, 19, and
20 and cover only the early sections in Chapters 15-17 plus Chapter 18.

Informal verification: Pre- and postconditions are used wherever
appropriate after Chapter 5, which introduces procedures with parame-
ters. Loop invariants appear in Chapter 10 and are used thereafter. Yet the
major discussions of these topics are confined to sections that can be
skipped or deemphasized at the instructor’s discretion.

Complexity: Informal running time analysis is first mentioned in
Chapter 10 in connection with nested loops, and thoroughly discussed in
Chapter 18 in connection with algorithms for searching and sorting. The
requisite mathematics is integrated with the material. Instructors prefer-
ring to skip such topics can do so without losing continuity.

Classic algorithms: A first course should introduce its students to
many of the classical algorithms on which later courses will build. This
book includes such algorithms as base conversion, case mapping,
counting characters and words in text, exponentiation, greatest common
divisor, square roots, Towers of Hanoi, expression parsing, line drawing,
string manipulations, binary search, selection sort, quicksort, list pro-
cessing, evaluation of postfix expressions, pseudorandom number gen-
eration, and simulation.

Teaching Aids

An instructor’s manual is available, containing

* Tips on teaching the course.

* Sample course outlines.

¢ Solutions to exercises and projects.

¢ A bank of exam questions.

In computer science, much more is learned in front of the machine

than in reading a book. Therefore, a number of major applications il-
lustrating the material in this book appear in a separate Laboratory

Manual, for use in a supervised, interactive computer lab or in self-
study. The manual guides students through such projects as greatest

Instructor’s Manual

Lab Manual

viii

Preface

common divisor, Turing machines, cellular automata, Eliza and the
Turing test, turtle graphics, curve and surface plotting, fractals, com-
parisons of sorting methods, and the construction of a simple editor.

Acknowledgments

Iam deeply indebted to many creative teachers who critiqued several
drafts of the book. Their detailed and thoughtful suggestions along
the way have had a profound effect on the final version:

Anthony Q. Baxter, University of Kentucky

David Alan Bozak, SUNY College at Oswego
Robert A. Christiansen, University of lowa

Denis A. Conrady, University of North Texas
Cecilia Daly, University of Nebraska-Lincoln
Douglas Dankel II, University of Florida

Edmund 1. Deaton, San Diego State University
George F. Luger, University of New Mexico

Michael G. Main, University of Colorado at Boulder
Andrea Martin, Louisiana State University

Kenneth L. Modesitt, Western Kentucky University
George A. Novacky, Jr., University of Pittsburgh
David L. Parker, Salisbury State University

Theresa M. Phinney, Texas A&M University

V. S. Sunderam, Emory University

Stephen F. Weiss, University of North Carolina-Chapel Hill

In addition, the following reviewers deserve thanks for reviewing
either the original proposal or the final manuscript:

Robert B. Anderson, University of Houston

Brent Auernheimer, California State University, Fresno
Louise M. Berard, Wilkes College

Larry C. Christensen, Brigham Young University

H. E. Dunsmore, Purdue University

Suzy Gallagher, University of Texas

David Hanscom, University of Utah

Robert M. Holloway, University of Wisconsin-Madison
Ronald P. Johnson, Evangel College

William E. McBride, Baylor University

Jane Wallace Mayo, University of Tennessee-Knoxville
David Phillips, University of Pennsylvania

Laurie White, Armstrong State College

Stephen G. Worth III, North Carolina State University-Raleigh
Marvin Zelkowitz, University of Maryland

Preface

ix

Seldom has an author been blessed with such fine and thorough
reviewers.

Many teaching assistants and students have helped with the evo-
lution of this book. I would particularly like to thank my teaching as-
sistants, Rich Thomson, Cliff Miller, Elena Driskill, Rory Cejka, Mark
Ellens, Mike Stephenson, and Lynn Eggli. I would also like to thank all
the students who made suggestions and corrections, especially Alex-
ander Kratsov, Randy Veigel, Mark Nolan, Blair Brandenberg, Ian
Adams, and David Swingle. Over the years, I have received many
helpful suggestions from John Halleck and LeRoy Eide, of the Univer-
sity of Utah Computer Center and from my wife, Lydia Salmon. They
too deserve effuse thanks.

For many years, I have received encouragement and inspiration
from Dave Hanscom, the Undergraduate Coordinator in the Univer-
sity of Utah’s Computer Science Department. I also owe a special debt
to my son, Edward Salmon, whose superb sense of design influenced
the page design, the cover, and several of the diagrams and projects in
this book.

Many thanks to the talented people at Richard D. Irwin, Inc., who
provided more support and help than I thought possible. I particu-
larly thank Bill Stenquist, the sponsoring editor, who said the turtle’s
head was too small but supported me all the way, and Sheila Glaser
and Max Effenson, the developmental editors, who cheered me along
while pointing out again and again that “but” is a conjunction.

But I should also mention Jackson P. Slipshod, who makes fre-
quent appearances in the questions and exercises in this book. To the
best of my knowledge, he made his first appearance in a chemistry
book by Joseph Nordmann, published many years ago by John Wiley
& Sons, Inc. Thanks to Dr. Nordmann'’s fine book, Jackson has been
dogging me ever since.

William 1. Salmon

Sequencing of Material

Program structures, data types,

and control structures Loop invariants,
Chapters 1-9 text files, running
(Can postpone Section 1.3 and times of loops
parts of Sections 4.3, 4.4) Chapter 10

' '

Subrange and enumerated types Recursion
-

Chapter 12 Chapter 11

Arrays - Abstract data types
Chapter 13 Chapter 14
Records Record ADTs
Sections 15.1-15.3 ™ Sections 15.4-15.5

'

Variant records
Section 15.6

+ |

Files, sets, searching, sorting, dynamic data structures,
stacks, queues: material may be introduced as desired.

Chapters 16-20

Contents

xi

Contents

PART ONE: COMPUTING

1. Computers and Computation

Introduction 2
1.1 Algorithms, Machines, and Programs 3
Questions 7
1.2 Computer Systems 8
Questions 15
1.3 Data Storage 16
Exercises 23
1.4 Programs 24
1.5 Editing, Compiling, and Executing a Pascal Program 28
1.6 The Need for Software Engineering 31
Looking Back 34
Questions and Exercises 35
References for Further Study 36
Terms Emphasized in Chapter 1 37
2. Explicit Techniques for Problem-Solving and Algorithm Design
Introduction 38
2.1 Clarify the Problem 39
2.2 Plan the User Interface First 39
2.3 Divide until Trivial; Then Conquer 41
24 Top-Down Design 41
2.5 Use Diagrams 45
2.6 Build on Previous Work 46
2.7 Structure the Data 47
2.8 Don’t be Satisfied with Your First Idea 47
Looking Back 48
Exercises 49
References for Further Study 51
Terms Emphasized in Chapter 2 52
PART TWO: PROGRAM STRUCTURES AND DATA TYPES
3. Program Structures
Introduction 54
3.1 A Pascal Program 55
Questions and Exercise 61

xii

Contents

3.2 Syntax Diagrams
Questions

3.3 Identifiers
Questions and Exercises

3.4 Modularity and Hierarchy
Exercises

3.5 Hierarchical Design
Question and Exercises

3.6 Testing and Debugging
Exercises

Looking Back

References for Further Study

Terms Emphasized in Chapter 3

4. Real Data and 1/0

Introduction

4.1 Real-Number Data
Questions and Exercises

4.2 Roundoff Error
Questions and Exercises

4.3 Using Parameters with Write and WriteLn
Questions and Exercises

44 Using Parameters with Read and ReadLn
Questions and Exercises

4.5 Designing an Interactive Program

Exercise
4.6 Testing and Debugging
Looking Back

Programming Projects
References for Further Study
Terms Emphasized in Chapter 4

5. Procedures

Introduction

5.1 Sending Parameters to a Procedure

5.2 Procedures with Value Parameters
Questions and Exercises

5.3 Procedures with Variable Parameters

5.4 A Procedure with Both Value and VAR Parameters
Questions and Exercises

5.5 Program States; Pre- and Postconditions

5.6 Application: A Procedure to Swap Two Values
Question

62
64
65
66
67
73
74
77
78
81
82
83
84

85
86
93
95
97
98
105
108
115
117
122
123
125
127
128
129

130
131
133
146
148
151
154
156
161
164

Contents

xiii

5.7 Global and Local Scope

5.8 Nested Procedure Calls; Local Procedures
Questions and Exercises

5.9 Testing and Debugging

Looking Back

Programming Projects

References for Further Study

Terms Emphasized in Chapter 5

6. Functions
Introduction
6.1 Calling a Function
6.2 Declaring a Function
6.3 When Do We use a Function? -
Questions and Exercises
6.4 Standard Functions in Pascal

Exercise
6.5 Testing and Debugging
Looking Back

Programming Projects
References for Further Study
Terms Emphasized in Chapter 6

7. Ordinal Data Types

Introduction

7.1 Ordinal Data

7.2 Integer Data
Questions and Exercises

7.3 Application: Displaying Integers in Binary
Exercise

7.4 Character Data

7.5 Application: Mapping Lowercase letters to Uppercase
Question and Exercises

7.6 Boolean Data

Exercises

7.7 Application: Character-Property Functions
Exercises

7.8 Operator Precedence
Exercises

Looking Back

Programming Projects
References for Further Study
Terms Emphasized in Chapter 7

164
171
178
181
184
185
186
187

188
190
192
200
201
203
204
205
206
206
208
208

209
211
211
218
219
226
222
230
232
233
241
243
246
247
249
250
251
252
253

Xiv Contents

PART THREE: CONTROL STRUCTURES

8. Decision Structures
Introduction

8.1

Sorting Three Numbers

8.2 Conditional Execution
Exercises

8.3 Two-Way Decisions
Exercises

8.4 Nested Decisions
Exercises

8.5 Application: Menus

8.6 CASE Structures
Question and Exercises

8.7 Testing and Debugging

Looking Back

Programming Projects
References for Further Study
Terms Emphasized in Chapter 8

9. Repetition by Iteration

Introduction
9.1 The WHILE Structure
9.2 Application: Counting Characters in Input

Questions and Exercises

9.3 Fenceposts, Semicolons, and Infinite Loops
9.4 Counter-Driven WHILE Structures
Exercises
9.5 FOR Structures
9.6 Using FOR Structures
Questions and Exercises
9.7 Application: Monte Carlo Calculation of
9.8 REPEAT..UNTIL Structures
Questions and Exercises
9.9 Testing and Debugging
Looking Back

Programming Projects
References for Further Study
Terms Emphasized in Chapter 9

10. Ilteration by Design
Introduction
10.1 Designing for Correctness: Loop Invariants

Questions and Exercises

256
257
259
267
269
272
273
278
280
281
284
285
286
287
289
290

291
292
293
300
301
304
306
309
317
319
321
327
329
332
334
334
336
337

338
339
347

Contents XV

10.2 Application: Raising a Real Number to an Integer Power 349

Questions and Exercises 355
10.3 Application: The Greatest Common Divisor 356
Exercises 362
10.4 Application: Square Roots by an Iterative Method 363
Questions and Exercises 369
10.5 Nested Loops and Running Times 371
Questions and Exercises 376
10.6 Text Files Revisited 379
Questions 383
10.7 Reading and Writing Text Files 383
Questions and Exercises 392
Looking Back 394
Programming Projects 394
References for Further Study 397
Terms Emphasized in Chapter 10 398
11. Repetition by Recursion
Introduction 399
11.1 The Power of Recursion 400
11.2° The Structure of a Recursive Subprogram 405
Questions 406
11.3 Iteration versus Recursion 406
Exercises 412
11.4 Recursion for Square Roots 412
Question and Exercises 417
11.5 The Towers of Hanoi 418
Question 423
11.6 Tail Recursion 423
11.7 When Not to Use Recursion 426
Looking Back 428
Programming Projects 428
References for Further Study 430
Terms Emphasized in Chapter 11 430

PART FOUR: DATA STRUCTURES AND DATA ABSTRACTIONS

12. Programmer-defined Types

Introduction 432
12.1 Subrange Types 433
12.2° Advantages of Subrange Types 437

Questions and Exercises 441

xvi

Contents

12.3 Enumerated Types
Questions

12.4 Application: A State Variable in Parsing

Questions
Looking Back
Programming Projects
References for Further Study
Terms Emphasized in Chapter 12

13. Arrays

Introduction
13.1 One-Dimensional Arrays
13.2 Storing Values in an Array
Exercises
13.3 Pitfalls with Arrays
Exercises
13.4 Parallel Arrays
Exercises
13.5 Multidimensional Arrays
Questions and Exercises
13.6 Application: A Payroll Program
Looking Back
Programming Projects
References for Further Study
Terms Emphasized in Chapter 13

14. Arrays as Abstract Data Types

Introduction
14.1 String Arrays
Exercises
14.2 Abstract Data Types
Exercises
14.3 A String Abstract Data Type
Exercises
14.4 Turtle Graphics
Question and Exercises
Looking Back
Programming Projects
References for Further Study
Terms Emphasized in Chapter 14

15. Records

Introduction
15.1 Records
Questions and Exercises

443
446
446
451
452
453
453
454

455
457

462

464
468
476
479
487
489
494
496
501
502
509
510

511
512
516
517
520
520
538
541
564
566
567
572
573

574
575
581

