STRUCTURES AND An lntrOdugtipn to
ABSTRACTIONS Computer Science

with Pascal

WILLIAM 1. SALMON



0115831

STRUCTURES AND ABSTRACTIONS

An Introduction to Computer Science with Pascal

i

4990115831

WILLIAM I. SALMON
Univer?&@f~~Umh*““ "“’"‘:” Lol

i
|

o BN
Yit B

CHANGHA {

. motrv §IARAY
UNIERDIT S Bamtid

IRWIN, ., ., -
Homewoodl, L -60430
Boston, MA 02116




This symbol indicates that the paper in
this book is made from recycled paper. Its
fiber content exceeds the racommended
minimum of 50% waste paper fibers as
specified by the EPA.

Dedicated to
the Spirit of Liberal Education,
wherever it survives.

© RICHARD D. IRWIN, INC., 1991

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Cover painting: Paul Klee, Submersion and Separation, 1923
83/4x 11 (22.2 x 27.9); watercolor and gouache

Collection of the Arts Club of Chicago, Arthur Heun Bequest
Reproduced by permission.

Senior sponsoring editor: Bill Stenquist
Project editor: Jane Lightell

Production manager: Irene H. Sotiroff
Designer and compositor: Bill Salmon
Cover designer: Image House, Inc.
Printer: R. R. Donnelly & Sons Company

The programs in this book have been included for instructional use only. They have
been carefully tested but are not guaranteed for any particular use. The author and
the publisher accept no liabilities for the use of the programs.

Library of Congress Cataloging-in-Publication Data

Salmon, W. (William L), 1942—

Structures and abstractions: an introduction to computer science
with pascal / William I. Salmon.

p. cm.

Includes index.
ISBN 0-256-08273-1
1. Pascal (Computer program language) 2. Data structures

(Computer science) 3. Abstract data types (Computer science)
L Title.

QA76.73.P2525 1991
530.1'2—dc20 90-26522

Printed in the United States of America
34567890 DOC 8765432



Preface iii

Preface

A first course in a subject should convey its spirit and ways of
thought. In computer science, the first course should convey models
of computation, design and engineering methods, and criteria for cor-
rectness and usefulness. These should be emphasized from the begin-
ning because they are the scientific and engineering foundations of
the subject. It isn’t enough to teach a particular programming lan-
guage; this would leave students without the tools for solving today’s
complex problems. Considerable classroom experience with a wide
range of students has led me to several conclusions:

Students should write modular programs from the very
beginning of the course. When algorithms are presented
from a hierarchical viewpoint, modular design can be
introduced early and emphasized consistently. There is no
need to unlearn bad habits or to apologize for early efforts.

Modular programming is not difficult for students who
concentrate on it without distractions. Therefore, modularity
should be covered before control structures and most data

types.
Students need explicit techniques for problem solving. When

-explicit techniques are seen frequently in a variety of pro-

gramming situations, they become standard “templates” for
problem solving, and a foundation for creative solutions to
new problems.

The abstractions of computing don’t lend themselves very
well to verbal descriptions. Data structures are visual and
algorithms have motion, and students must be able to picture
both the data structures and the actions that occur in a
program.

Good programs don’t work correctly by luck; they are
engineered so that they have to work. Beginners need simple
techniques to guarantee the correctness of algorithms before
writing programs.
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Prerequisites

* Recursion is less familiar than iteration, but no more myste-
rious. These two techniques for repetition are equally
important and each illuminates the other. Therefore, recur-
sion and iteration should be taught side-by-side and com-
pared frequently.

This book is intended for introductory computer science courses
emphasizing modern software engineering practice. The illustrative
programming language is Pascal, but Pascal is not the main subject of
the text. The main topics are modularity, hierarchy, abstraction, verifi-
cation, and analysis, as tools for computational problem solving.
These are emphasized constantly, from the very beginning.

Structures and Abstractions satisfies curriculum recommendations
of the Association for Computing Machinery (ACM) and the Institute
of Electrical and Electronic Engineers (IEEE) for a first course in
computer science (CS1). It includes all material recommended by the
ACM for CS1 courses and also introduces material recently recom-
mended by the ACM/IEEE Joint Curriculum Committee for future
introductory courses and by Norman Gibbs and Allen B. Tucker, Jr.,
for the introductory course in liberal arts curricula. Parts Four and
Five of the book overlap the recommended ACM/IEEE curriculum
for CS2 (data structures) courses. A sequel to the present book, to be
entitled Abstractions and Analysis, will be designed specifically for CS2
courses.

The present book provides enough material for a variety of intro-
ductory courses, ranging from a single quarter to two semesters in
length. There is considerable optional material to allow for various
approaches in different teaching situations. A dependency diagram at
the end of this preface shows various paths through the book.

The standard edition of Structures and Abstractions uses (except in
one appendix) only ISO/ANSI Standard Pascal. All examples have
been tested in several typical Pascal environments to ensure that they
run correctly. A separate edition is available for those preferring a
treatment specific to Borland International’s Turbo Pascal®.

The reader is not assumed to have prior programming experience,
but should be computer-literate, with enough experience in mathe-
matics to appreciate the need for rigorous thought and to understand
algebraic proofs. The material has been tested with considerable suc-
cess on several hundred freshmen and sophomores at the University
of Utah over a period of several years. I have found that the best pre-
dictors of success in the CS1 course are skill in mathematical proofs
and word problems and an ability to communicate clearly in writing.
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Specific Features

Design and analysis: Structures and Abstractions places heavy
emphasis on the fundamental techniques for proper software engi-
neering, including top-down modular design, bottom-up testing, pro-
cedural and data abstraction, the use of assertions and loop invari-
ants, and elementary running time analysis. Modular, hierarchical de-
sign is constantly emphasized, beginning in Chapter 3 with the very
first program. Chapter 4 introduces I/O procedures for practice in
using parameters. Chapters 5 and 6 then provide a complete treat-
ment of procedures and functions with both value and variable pa-
rameters. There are hardly any monolithic programs in the book.

Style: The book itself reflects the rules of good programming style.
For example, subjects like modularity, procedural abstraction, data ab-
straction, recursion, loop invariants, and dynamic data structures are
introduced by themselves in their own modules, so that the reader can
focus full attention on them. Then each topic is learned “bottom up,”
with a sequence of stepped examples that gradually increase in com-
plexity and abstraction. Like the programs themselves, chapters are short
and modular, divided into short sections with clear goals. The modular
design of the book makes for more chapters, sections, and subsections,
but clearer reading without added length.

Explicit problem-solving techniques: Classroom testing has proven
that students benefit from the presentation and repeated use of explicit
methods for problem solving. Chapter 2 presents eight of the most gener-
ally useful. These techniques are illustrated with a nontrivial example in
Chapter 2, then used repeatedly throughout the following chapters. By
seeing the same techniques applied in different situations, readers
gradually learn to use them.

A spiral, not a “peek-a-boo” approach: Students need to see why the
rules of practice and style are necessary. Structures and Abstractions in-
troduces techniques when they are needed, then uses them persistently
and consistently. The reader never loses sight of a topic while seeing it
unfold, because an important topic is never dropped after being intro-
duced. The gradually deepening and continual exposure to abstraction
deepens readers’ understanding and appreciation of each topic.
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Pedagogical Aids

Chapter outlines and summaries: Each chapter begins with a few
introductory paragraphs connecting the chapter with previous mate-
rial and outlining the topics to be covered. The chapter ends with a
quick summary of the main points that were made.

Visualization: Sequences of execution during procedure calls, itera-
tion, recursion, and other complex actions are animated by sequences of
diagrams. Altogether, there are more than 35 such animations, contain-
ing more than 185 diagrams. In addition, there are hundreds of diagrams
of syntax and data structures—over 370 in all.

Exercises and programming projects: Questions and exercises are
distributed throughout the chapters, after material requiring practice.
Some of these exercises are puzzles that simulate typical debugging
experiences. Major programming projects are found at the ends of the
chapters. Altogether, there are more than 650 problems, occupying 140

pages.
Applications: Important programming issues are illustrated by ap-
plication to typical problems in computer science. These include first

glimpses of many of the kinds of problems to be encountered in later
courses.

Debugging aids: Debugging techniques and examples are discussed
frequently. In addition to standard techniques involving modular testing
and intermediate output, typical interactive debugging tools are de-
scribed. Always, the reader is reminded that it is most important to pre-
vent bugs in the first place, by good engineering practices.

Using the Book in Class

Few CS1 courses will be able to cover all the material in this book, so
advanced topics are presented in a modular fashion that allows for
customization.

Recursion takes a long time to sink in, so it is introduced in Chapter
11 and revisited frequently, with heavy use of animation diagrams like
those used earlier for nested procedure calls. Iteration and recursion are
treated as equally important techniques for repetition, and often both
versions of an algorithm are examined. Instructors preferring to deem-
phasize recursion in their courses can skip some of these sections.
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Abstract data types: Data abstraction is introduced in Chapter 14,
right after arrays. Beginning with Chapter 15 on records, abstract data
types are used in more complex applications involving strings, graphics,
linked lists, trees, stacks, and queues. For those preferring to implement
ADTs by means of units or include files, Appendix H covers these tech-
niques. Instructors preferring to skip ADTs can skip Chapters 14, 19, and
20 and cover only the early sections in Chapters 15-17 plus Chapter 18.

Informal verification: Pre- and postconditions are used wherever
appropriate after Chapter 5, which introduces procedures with parame-
ters. Loop invariants appear in Chapter 10 and are used thereafter. Yet the
major discussions of these topics are confined to sections that can be
skipped or deemphasized at the instructor’s discretion.

Complexity: Informal running time analysis is first mentioned in
Chapter 10 in connection with nested loops, and thoroughly discussed in
Chapter 18 in connection with algorithms for searching and sorting. The
requisite mathematics is integrated with the material. Instructors prefer-
ring to skip such topics can do so without losing continuity.

Classic algorithms: A first course should introduce its students to
many of the classical algorithms on which later courses will build. This
book includes such algorithms as base conversion, case mapping,
counting characters and words in text, exponentiation, greatest common
divisor, square roots, Towers of Hanoi, expression parsing, line drawing,
string manipulations, binary search, selection sort, quicksort, list pro-
cessing, evaluation of postfix expressions, pseudorandom number gen-
eration, and simulation.

Teaching Aids

An instructor’s manual is available, containing

* Tips on teaching the course.

* Sample course outlines.

¢ Solutions to exercises and projects.

¢ A bank of exam questions.

In computer science, much more is learned in front of the machine

than in reading a book. Therefore, a number of major applications il-
lustrating the material in this book appear in a separate Laboratory

Manual, for use in a supervised, interactive computer lab or in self-
study. The manual guides students through such projects as greatest

Instructor’s Manual

Lab Manual
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common divisor, Turing machines, cellular automata, Eliza and the
Turing test, turtle graphics, curve and surface plotting, fractals, com-
parisons of sorting methods, and the construction of a simple editor.
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