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Preface

“But I have lived, and have not lived in vain:
My mind may lose its force, my blood its fire,
And my frame perish even in conquering pain,
But there is that within me which shall tire
Torture and Time, and breathe when I expire. ..”
Lord Byron

This book is a greatly expanded, revised and updated version of
the previous book “Mathematical Models of Hysteresis” (Springer-Verlag,
1991). This book deals with mathematical models of hysteresis nonlineari-
ties with “nonlocal memories”. The distinct feature of these nonlinearities
is that their future states depend on past histories of input variations. It
turns out that memories of rate-independent hysteresis nonlinearities are
quite selective. Indeed, only some past input extrema (not the entire input
variations) leave their marks upon the future states of rate-independent
hysteresis nonlinearities. Thus, special mathematical tools are needed to
describe nonlocal selective memories of such hysteresis nonlinearities.
The origin of such tools can be traced back to the landmark paper of
Preisach.

The first three chapters of this book are primarily concerned with
Preisach-type models of hysteresis. All these models have a common
generic feature: they are constructed as superpositions of the simplest hys-
teresis nonlinearities—rectangular loops. The discussion in these chapters
is by and large centered around the following topics: various generaliza-
tions and extensions of the classical Preisach model of hysteresis (with
special emphasis on vecter géneralizations); finding of necessary and suf-
ficient conditions for the’ representation of actual hysteresis nonlinearities
by various Preisach-type models; solution of identification problems for
these models, their numerical implementation afd extensive experimen-
tal testing. Our exposition of Preisach-type modéls of hysteresis has two
salient features. The first 1s the strong emphasis on the universality of the
Preisach models and their applicability to the mathematical description of
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Preface

hysteresis phenomena in various areas of science and technology. The sec-
ond is the accessibility of the material in the first three chapters to a broad
audience of researchers, engineers and students. This is achieved through
the deliberate use of simple mathematical tools. The exception is the dis-
cussion of the identification problems for the vector Preisach models in the
third chapter, where some machinery of integral equations and the theory
of irreducible representations of the group of rotations are occasionally
used.

The book contains three new chapters that deal with applications of
the Preisach formalism to the modeling of thermal relaxations (viscosity)
in hysteretic materials as well as to the modeling of superconducting hys-
teresis and eddy current hysteresis. In Chapter 4, Preisach models driven
by stochastic inputs are used for the description of thermal relaxations
in hysteretic systems. This approach explicitly accounts for the hysteretic
nature of materials, their past histories and stochastic characteristics of
internal thermal noise. In this sense, this approach has certain advantages
over traditional thermal activation type models of viscosity. This approach
also reveals the origin of universality of intermediate In-type asymptotics
for thermal relaxations. Some results of experimental testing of thermal
decay in magnetic materials are presented and the phenomenon of scal-
ing and “data collapse” for viscosity coefficients is reported. The chapter
also presents the modeling of temperature dependent hysteresis within
the framework of randomly perturbed fast dynamical systems and the
discussion of functional (path) integration models of hysteresis and their
connections with Preisach-type models.

Chapter 5 covers the modeling of superconducting hysteresis. It starts
with the discussion of the critical state (Bean) model for superconductors
with ideal (sharp) resistive transitions. It is demonstrated that this model
is a very particular case of the Preisach model of hysteresis and, on this ba-
sis, it is strongly advocated to use the Preisach model for the description
of superconducting hysteresis. The results of extensive experimental test-
ing of the Preisach modeling of superconducting hysteresis are reported
and the remarkable accuracy of this modeling is highlighted. The case of
gradual resistive transitions described by “power laws” is treated through
nonlinear diffusion equations and analytical solutions of these equations
are found for linear, circular and elliptical polarizations of electromagnetic
fields.

Chapter 6 deals with eddy-current hysteresis in magnetically non-
linear conductors. It is demonstrated that in the case of sharp magnetic
transitions (abrupt saturation), the eddy current hysteresis can be rep-
resented in terms of the Preisach model. This representation reveals the
remarkable fact that nonlinear (and dynamic) eddy current hysteresis can
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be fully characterized by its step response. Eddy current hysteresis for
gradual magnetic transitions is studied by using nonlinear diffusion equa-
tions and analytical solutions of these equations are reported for linear
and circular polarizations of electromagnetic fields. The developed tech-
niques are used to study “excess” eddy current and hysteresis losses as
well as rotational eddy current losses.

In this book, no attempt is made to refer to all relevant publications.
For this reason, the lists of references are not exhaustive but rather sug-
gestive. The presentation of the material in the book is largely based on
the publications of the author and his collaborators.

I first heard about the Preisach model during my conversation with
Professor K. M. Polivanov. This was about thirty years ago, and at that
time I lived in Russia. Shortly thereafter, my interest in the Preisach model
was strongly enhanced as a result of my discussions with Professors
M. A. Krasnoselskii and A. Pokrovskii. When I came to the United States,
my work on hysteresis modeling was encouraged by Dr. O. Manley from
the U.S. Department of Energy. My research on the Preisach models has
benefited from many penetrating discussions I have had with Professor
D. Fredkin (University of California, San Diego). I was also fortunate to
have such wonderful graduate students as G. Friedman, C. Korman, and
A. Adly, who assisted me at different times in my work on hysteresis and
who became important contributors in this field in their own right. I am
very grateful to my collaborators Professor M. Freidlin, Drs. G. Bertotti,
C. Serpico and C. Krafft for the gratifying experience I have had work-
ing with them. I acknowledge with gratitude the numerous stimulating
discussions I had with Professors A. Visintin, M. Brokate, J. Sprekels and
P. Krejci over the past twenty years. I am very thankful to Mrs. P. Keehn
who patiently, diligently and professionally typed several versions of the
manuscript. In the preparation of the manuscript, I have also been as-
sisted by my students Chun Tse and Mihai Dimian. Finally, I gratefully
acknowledge the financial support for my research on hysteresis from the
U.S. Department of Energy, Engineering Research Program.



Introduction

The topic being discussed in this book is mathematical models of hystere-
sis. Special emphasis is placed on the mathematical exposition of these
models which makes them quite general and applicable to the descrip-
tion of hysteresis of different physical nature. There are, however, two
additional reasons for this emphasis. As was pointed out by A. Ein-
stein [1], ... mathematics enjoys special esteem, above all other sciences,
[because] its laws are absolutely certain and indisputable. .. .” Mathemat-
ics has achieved and maintained this exceptional position because its re-
sults are derived from a few (more or less self-evident) axioms by a chain
of flawless reasonings. Since it is based on impeccable logic, mathemat-
ics can provide some level of security (and clarity) for natural sciences
which is not attainable otherwise. For this reason, the rigorous mathe-
matical treatment of natural sciences is highly desirable and should be
attempted whenever is possible. In addition, mathematics more and more
often serves as a vehicle of communication between scientists and engj-
neers of different specializations. As a result, if some area of science is
represented in a rigorous mathematical form, its accessibility is strongly
enhanced. With these thoughts in mind, it is hoped that the mathematical
exposition of hysteresis models undertaken here will bring much needed
clarity into this area and will make it appealing to the broader audience of
inquiring researchers.

This monograph has been written by an engineer for engineers. For
this reason, mathematics is largely used in the book as a tool rather than
a topic of interest in its own right. As a result, many mathematical sub-
tleties of hysteresis modelling are omitted. These subtleties are by and
large related to the fact that hysteresis operators are naturally defined on
sets of piece-wise monotonic functions that do not form complete function
spaces. This leads to the problem of continuous extension of hysteresis op-
erators from the above sets to some complete function spaces. The reader
interested in this type of mathematical problems is referred to the study
by the Russian mathematicians M. Krasnoselskii and A. Pokrovskii [2] as
well as to the books of A. Visintin [3] and M. Brokate and J. Sprekels [4].

xiii
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FIGURE 1

The phenomenon of hysteresis has been with us for ages and has
been attracting the attention of many investigators for a long time. The
reason is that hysteresis is ubiquitous. It is encountered in many differ-
ent areas of science. Examples include magnetic hysteresis, ferroelectric
hysteresis, mechanical hysteresis, superconducting hysteresis, adsorption
hysteresis, optical hysteresis, electron beam hysteresis, economic hystere-
sis, etc. However, the very meaning of hysteresis varies from one area to
another, from paper to paper and from author to author. As a result, a
stringent mathematical definition of hysteresis is needed in order to avoid
confusion and ambiguity. Such a definition will serve a twofold purpose:
first, it will be a substitute for vague notions, and, second, it will pave the
road for more or less rigorous treatment of hysteresis.

We begin with the definition of scalar hysteresis and, for the sake of
generality, we adopt the language of control theory. Consider a transducer
(see Fig. 1) that can be characterized by an input u(t) and an output f(#).
This transducer is called a hysteresis transducer (HT) if its input-output
relationship is a multibranch nonlinearity for which branch-to-branch
transitions occur after input extrema. This multibranch nonlinearity is
shown in Fig. 2. For the most part, the case of rate-independent hysteresis
nonlinearity will be discussed. The term “rate-independent” means that
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FIGURE 2
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branches of such hysteresis nonlinearities are determined only by the past
extremum values of input, while the speed (or particular manner) of input
variations between extremum points has no influence on branching. This
statement is illustrated by Figs. 3a, 3b and 3c. Figures 3a and 3b show
two different inputs u1(t) and ux(f) that successively assume the same
extremum values but vary differently between these values. Then, for a
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rate-independent HT, these two inputs will result in the same f-u dia-
gram (see Fig. 3c), provided that the initial state of the transducer is the
same for both inputs.

The given definition of rate-independent hysteresis is consistent with
existing experimental facts. Indeed, it is known in the area of magnetic
hysteresis that a shape of major (or minor) loop (see Fig. 4) can be spec-
ified without referring to how fast magnetic field H varies between two
extremum values, +Hy, and —Hj,. This indicates that time effects are negli-
gible and the given definition of a rate-independent hysteresis transducer
is an adequate one. It is worthwhile to keep in mind that, for very fast
input variations, time effects become important and the given definition
of rate-independent hysteresis fails. In other words, this definition (as any
other definition) has its limits of applicability to real life problems.

It is also important to stress that the notion of rate-independent hys-
teresis implies three distinct time scales. The first is the time scale of
fast internal dynamics of the transducer. The second is the time scale
on which observations (measurements) are performed. This time scale is
much larger than the time scale of internal transducer dynamics so that
every observation can be identified with a specific output value of the
transducer. The third is the time scale of input variations. This time scale
is much larger than the observation time scale so that every measurement
can be associated with a specific value of input.

In the existing literature, the hysteresis phenomenon is by and large
linked with the formation of hysteresis loops (looping). This may be mis-
leading and create the impression that looping is the essence of hysteresis.
In this respect, the given definition of hysteresis emphasizes the fact that
history dependent branching constitutes the essence of hysteresis, while
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looping is a particular case of branching. Indeed, looping occurs when the
input varies back and forth between two consecutive extremum values,
while branching takes place for arbitrary input variations.

From the given definition, it can also be concluded that scalar hystere-
sis can be interpreted as a nonlinearity with a memory which reveals itself
through branching.

In the given definition of hysteresis, the physical meanings of the in-
put u(t) and the output f(t) were left unspecified. It was done deliberately,
for the sake of mathematical generality. However, it is not difficult to spec-
ify the meanings of u(t) and f(t) in particular applications. For instance, in
magnetism u(t) is the magnetic field and f(t) is the magnetization, in me-
chanics u(t) is the force and f(t) is the displacement (length), in adsorption
u(t) is the gas pressure and f(t) is the amount of material adsorbed. The
notion of hysteresis transducer may have different interpretations as well.
For instance, in magnetism the HT can be construed as an infinitesimally
small volume of magnetic material, and the corresponding input-output
hysteresis nonlinearity can be interpreted as a constitutive equation for
this material.

All rate-independent hysteresis nonlinearities fall into two general
classifications: (a) hysteresis nonlinearities with local memories, and
(b) hysteresis nonlinearities with nonlocal memories. The hysteresis non-
linearities with local memories are characterized by the following prop-
erty. The value of output f(t) at some instant of time 9 and the values of
input u(t) at all subsequent instants of time > to uniquely predetermine
the value of output f(t) for all t > to. In other words, for hysteresis trans-
ducers with local memories the past exerts its influence upon the future
through the current value of output. This is not the case for hysteresis
transducers with nonlocal memories. For such transducers, future values
of output f(t) (t > to) depend not only on the current value of output f(to)
but on past extremum values of input as well.

Typical examples of hysteresis nonlinearities with local memories are
shown in Figs. 5, 6, and 7. Figure 5 shows the simplest hysteresis nonlin-
earity with local memory. It is specified by a major loop which is formed
by ascending and descending branches. These branches are only partially
reversible (their vertical sections are not reversible). This type of hystere-
sis nonlinearity is characteristic, for instance, of single Stoner-Wolhfarth
magnetic particles [5]. For this type of hysteresis, branching occurs if ex-
tremum values of input exceed +uy; Or —ip.

A more complicated type of hysteresis nonlinearities with local mem-
ories is illustrated by Fig. 6. Here, there is a set of inner curves within
the major loop and only one curve passes through each point in the f-u
diagram. These curves are fully reversible and can be traversed in both
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directions, for a monotonically increasing and decreasing input u(t). For
this type of hysteresis, branching may occur only when ascending or de-
scending branches of major loops are reached.

A hysteresis nonlinearity with local memory that has two sets of in-
ner curves (the ascending and descending curves) is shown in Fig. 7. This
type of hysteresis was probably first described by Madelung [6] in the
beginning of the century, and afterwards it was independently invented
by many authors time and time again (see, for instance, [7] and [8]). For
this hysteresis nonlinearity, only one curve of each set passes through each
point in the f—u diagram. If the input u(t) is increased, the ascending curve
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FIGURE 8

is followed; if it is decreased, the descending curve is traced. Thus, branch-
ing occurs for any input extremum. However, in general, minor loops are
not formed; if u(t) varies back and forth between the same two values, the
output usually exhibits a continued upward drift.

It is clear from the above examples that all hysteresis nonlinearities
with local memories have the following common feature: every reachable
point in the f-u diagram corresponds to a uniquely defined state. This
state predetermines the behavior of HT in exactly one way for increasing
u(t) and exactly one way for decreasing u(t). In other words, at any point
in the f-u diagram there are only one or two curves that may represent
the future behavior of HT with local memory (see Fig. 8). This is not true
for hysteresis transducers with nonlocal memories. In the latter case, at
any reachable point in the f—u diagram there is an infinity of curves that
may represent the future behavior of the transducer (see Fig. 9). Each of
these curves depends on a particular past history, namely, on a particular
sequence of past extremum values of input. By analogy with the random
process theory, hysteresis nonlinearities with local memories can be called
Markovian hysteresis nonlinearities, while hysteresis nonlinearities with
nonlocal memories are non-Markovian. It is clear that hysteresis nonlin-
earities with nonlocal memories are much more complicated than those
with local memories.

Mathematical models of hysteresis nonlinearities with local memo-
ries have been extensively studied by using differential and algebraic
equations. These models have achieved high level of sophistication that
is reflected, for instance, in publications [9-12]. However, the notion of
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hysteresis nonlinearities with local memories is not consistent with ex-
perimental facts. For instance, it is reported in [13] that crossing and par-
tially coincident minor loops have been experimentally observed. These
loops are schematically shown in Figs. 10 and 11, respectively. The ex-
istence of crossing minor loops attached to a major loop is more or less
obvious, while the presence of partially coincident minor loops is a more
subtle phenomenon. The existence of crossing and partially coincident mi-
nor loops clearly suggests that the states of the corresponding hysteresis
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transducers are not uniquely specified by their inputs and outputs. Thus,
hysteresis of this transducer does not have a local memory.

This book is solely concerned with mathematical models of hysteresis
with nonlocal memory. The question arises, why are these models needed?
The answer is that the hysteresis transducer is usually a part of a system.
As a result, its input is not known beforehand, but is determined by the
interaction of the transducer with the rest of the system. Since the input of
HT is not predictable a priori, it is impossible to specify ahead of time the
branches of hysteresis nonlinearity which will be followed in a particular
regime of the system. This is the main impediment as far as self-consistent
mathematical descriptions of systems with hysteresis are concerned. To
overcome the difficulty mentioned above, mathematical models of hys-
teresis are needed. These models represent new mathematical tools that
themselves (due to their structure) will detect and accumulate input ex-
trema and will choose appropriate branches of the hysteresis nonlinearity
according to the accumulated histories. Coupled together with mathe-
matical description of the rest of the system, these models will constitute
complete and self-consistent mathematical descriptions of systems with
hysteresis. Without such models, the self-consistent mathematical descrip-
tions of systems with hysteresis are virtually impossible.

We next turn to the discussion of vector hysteresis. This hysteresis
can be characterized by a vector input #(t) and vector output f(t) (see
Fig. 12). Two- and three-dimensional vector inputs and vector outputs are
most relevant to practical applications. That is why only two- and three-
dimensional vector hysteresis models are discussed in the book. However,
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the formal mathematical generalization of these models to # dimensions
(n > 3) is straightforward. It is believed that such a generalization will be
performed by the reader if it is needed.

The most immediate problem we face is how to define vector hys-
teresis in a mathematically rigorous as well as physically meaningful way.
To do this, it is important to understand what constitutes in the case of
vector hysteresis the essential part of past input history that affects the
future variations of output. In the case of scalar rate-independent hystere-
sis, experiments show that only past input extrema (not the entire input
variations) leave their mark upon future states of hysteresis nonlineari-
ties. In other words, the memories of scalar hysteresis nonlinearities are
quite selective. There is no experimental evidence that this is the case for
vector hysteresis. As a result, we must resign ourselves to the fact that all
past vector input values may affect future output variations. The past in-
put variations can be characterized by an oriented curve L traced by the
tip of the vector input #(#) (see Fig. 13). Such a curve can be called an in-
put “hodograph.” Vector rate-independent hysteresis can be defined as a
vector nonlinearity with the property that the shape of curve L and the
direction of its tracing (orientation) may affect future output variations,
while the speed of input hodograph tracing has no influence on future
output variations. Next, we demonstrate that scalar rate-independent hys-
teresis can be construed as a particular case of vector rate-independent
hysteresis. This case is realized when the vector input is restricted to vary
along only one direction (one line). In fact, it can be successfully argued
(atleast in the area of magnetics) that there is no such a thing as scalar hys-
teresis. Whenever we talk about scalar hysteresis, we are actually dealing
with some specific properties of vector hysteresis that have been observed
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for vector input variations restricted to some fixed directions. It is appar-
ent that, for unidirectional input variations u(t) = au(t), input hodographs
(see Fig. 14) are uniquely determined by current values of u(t) as well as
by past extrema of u(t). In this sense, vector rate-independent hysteresis is
reduced to scalar rate-independent hysteresis with the input u(t).

Next, we shall give another equivalent definition of rate-independent
vector hysteresis in terms of input projections. This definition will be con-
venient in the design of mathematical models of vector hysteresis. Con-
sider input projection along some arbitrary chosen direction. As the vector
#(t) traces the input hodograph, the input projection along the chosen di-
rection may achieve extremum values at some points of this hodograph.
In this sense, the extrema of input projection along the chosen direction
samples certain points of the input hodograph. If the projection direction
is continuously changed, then the extrema of input projections along the
continuously changing direction will continuously sample all points on
the input hodograph. In this way, the past extrema of input projections
along all possible directions reflect the shape of input hodograph and,
consequently, the past history of input variations. Thus, we arrive at the
definition of vector rate-independent hysteresis as a vector nonlinearity
with the property that past extrema of input projections along all possible
directions may affect future output values. It is clear that mathematical
models of vector hysteresis are imperative for self-consistent descriptions
of systems with vector hysteresis. These models should be able to detect
and store past extrema of input projections along all possible directions
and choose the appropriate value of vector output according to the accu-
mulated history.

This book deals exclusively with the mathematical models of hystere-
sis that are purely phenomenological in nature. Essentially, these models
represent the attempt to describe and generalize experimental facts. They
provide no insights into specific physical causes of hysteresis. Neverthe-
less, they have been and may well continue to be powerful tools for device
design. There are, however, fundamental models of hysteresis which at-
tempt to explain experimental facts from first principles. For instance,
in micromagnetics, these principles require that the equilibrium distrib-
ution of magnetization should correspond to free energy minimum. The
minimized energy basically includes the exchange energy, the anisotropy
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energy, the energy of interaction with an applied field, the magnetosta-
tic self-energy, and possibly some other terms. It turns out that there are
many (at least two) different local minima of the total energy for a given
applied field. Since only one of these energy minima corresponds to the
thermodynamic equilibrium state, the others must be metastable. They
may persist for a very long time. These persisting metastable states are
responsible for the origin of hysteresis.

Although the above micromagnetic approach is fundamental in na-
ture, its implementation encounters some intrinsic difficulties.

First, in order to carry out this approach, the detailed information of
microscopic material structure is needed. Only on the basis of this infor-
mation can the above-mentioned terms of minimized energy be specified.
However, the detailed knowledge of material microstructure is often not
available.

Second, the micromagnetic approach leads to nonlinear differential
(or integrodifferential) equations which are quite complicated to solve
even using sophisticated numerical techniques. In part, this is because
the solution of these equations may exhibit highly irregular behavior. In-
deed, domains and their walls should emerge from the micromagnetic
approach. The domain walls are small regions where the direction of mag-
netization changes quite rapidly, from some particular direction in one
domain to a different direction in an adjacent domain. In a way, these
domain walls can be mathematically construed as interior layers. This
suggests that micromagnetic problems may well belong to the class of sin-
gularly perturbed problems. (This fact has not been appreciated enough in
the existing literature). To resolve the fast variations of magnetization over
the domain walls, very fine meshes are needed. But, the domain walls usu-
ally move when the applied field is changed. Thus, it is not clear a priori
where the fine meshes should be located. This may seriously complicate
the numerical analysis.

Finally, the detailed domain structure which can be produced by the
micromagnetic approach may be irrelevant to some practical problems.
This is the case, for instance, in the design of devices for which the average
value of magnetization over regions with dimensions much larger than
domain dimensions is of interest.

Summarizing the above discussion, it can be concluded that the phe-
nomenological approach is more directly connected with macroscopic
experimental data. For this reason, it is of a great value to device de-
signers. The fundamental micromagnetic approach, on the other hand, is
intimately related to material structure and, therefore, it can be useful in
the design of new materials.



