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PREFACE TO SECOND EDITION

“Stratified Flows” is the name I have given to this second edition of
“Dynamics of Nonhomogeneous Fluids” for several reasons: The new title
is shorter, the term stratified flows is now well established in the literature,
and above all, usage has endowed the term with an association with gravity
effects, in which the most interesting features of the dynamics of non-
homogeneous fluids reside.

I have taken the opportunity of this second edition to make corrections,
omit some parts that now seem unimportant, and add new sections to the
book. I have also added after each chapter critical notes on new results
(available after 1965) that are closely related to the topics discussed in the
main body of the book. These notes are not exhaustive, and to make amern is
for their sparseness 1 have provided at the end of the book an extensive
bibliography, which has been enlarged and brought up to date. I hope that
this bibliography will be useful to anyone seeking to inform himself about
more recent developments in the dynamics of stratified flows. In other
respects I have preserved the structure and points of view of the first edition.

I express my thanks to Mrs. Beverly Pyle for ably typing the manuscript
for the second edition. Two friends, Y. C. Fung of La Jolla and Milton van
Dyke of Palo Alto, have given me great encouragement in the course of my
work on this edition. Professor van Dyke’s unique combination of generosity
and enthusiasm was just the nourishment I needed to complete this rather
arduous task. Much of the revision of this book was done in 1978 during my
sojourn in Karlsruhe, which was made possible by a Humboldt award. To
the Alexander von Humboldt Foundation I express my sincere appreciation
for giving me the time for undisturbed work.

Finally, I thank the staff at Academic Press for their splendid cooperation.
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PREFACE TO FIRST EDITION

This book deals with the flow of a fluid of variable density or entropy in
a gravitational field. Without gravity, the heterogeneity of a fluid can have
only minor effects on its behavior. Indeed, the totality of solutions for the
motion of a heterogeneous fluid can be shown to be completely equivalent
to the totality of solutions for a homogeneous fluid, provided the flow is
steady and the fluid inviscid and nondiffusive. Without heterogeneity, gravity
has no effect whatsoever on the kinematics or dynamics of the flow, aside
from contributing to the total pressure a hydrostatic part. Of course, since
a free surface marks the boundary between a fluid and another of negligible
inertia and viscosity, its presence implies the presence of heterogeneity, and,
in fact, heterogeneity in an extreme form. If heterogeneity and gravity are
both present, the situation is not merely more complicated. Often their
interplay produces striking phenomena entirely unexpected.

Since gravity is omnipresent, and fluid homogeneity an exception rather
than a rule, the subjuct dealt with in this book is relevant to most flows
occurring in nature. If gravity effects have been totally ignored by aero-
dynamicists, it is because the airplane is too small and too fast for gravity
effects to be appreciable. The magnificent development of aerodynamics
since the turn of the century need not obscure the fact that there remain
wide areas of fluid mechanics, no less challenging and rewarding, awaiting
the energy of the scientific worker for their exploration. It is hoped that this
little book will provide an introduction to one of these areas.

It is quite impossible to be exhaustive in the treatment, and, since this book
is not intended to be a handbook, exhaustiveness is perhaps not even
desirable. I have tried to use gravity as the warp and heterogeneity as the
woof of a mat underlying and unifying the material presented. On it a few
interlocking patterns are discernible. There is the pattern of particular history
and its utilization (Chapter 1, Section 2; Chapter 3, Sections 1-14; and
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xiv PREFACE TO FIRST EDITION

Chapter 5, Section 4). There is the use of singularities and the inverse method
for dealing with large-amplitude motions (most of Chapter 3 and a good part
of Chapter 5). There is the pattera of eigenvalue problems (Chapters 2 and
4). In Chapter 2, ihe threads are provided by Sturm, Liouville, and Béocher,
whereas much more modern fabric is used in Chapter 4. From the point of
view of content, Chapter 1 gives some general results serving as preliminaries
to the following three chapters, which might be of some interest to workers
in meteorology, oceanography, and engineering. Chapter 5 deals exclusively
with seepage flow in porous media; it is hoped that the many recent results
presented there, though far from being exhaustive, may be useful to civil
engineers dealing with ground water flow and chemical engineers interested
in oil seepage in the ground. Chapters 2 and 4 would be more useful to the
oceanographer and the meteorologist if Coriolis effects of the earth’s rotation
had been discussed more thoroughly. The exclusion of a thorough discussion
of these effects is not merely a matter of economy of space. I am afraid that
such a discussion would distract from the main point of view, and I content
myself with the provision of a separate chapter (Chapter 6), in which the
analogy between the flow of a heterogeneous fluid in a gravitational field and
the flow of an accelerating or rotating fluid is presented. This chapter is
therefore a little rug on which the patterns of the main rug are traced out, in
the hope of giving some satisfying sense of unity between the two categories
of fluid flow.

Many familiar results in the fiow of a heterogeneous fluid in a gravi-
tational field are missing in this book. The most obvious ones are those on
water waves and those on gravitational convection. There seems to be little
need and even less possibility of including the extensive results on water
waves presented in Lamb’s and Professor Stoker’s excellent books. Much of
the familiar results on gravitational convection not mentioned in this book
can be found in books on heat transfer. Although the analogy of the flow
of a conducting fluid in a magnetic field to that of a stratified or rotating
fluid is sometimes mentioned in Chapter 6, for full information on hydro-
magnetic stability the reader must be referred to the literature, and especially
to Professor S. Chandrasekhar’s excellent and extensive book. 1 have not
included any detailed information on turbulence in a stratified fluid because
it seems to me that the time for such an inclusion has not yet arrived.

" The bibliography, like the subject matter, is not exhaustive. But if the
reader looks up the references given in the papers and books referred to in
this book, and repeats the process, it is unlikely that he will miss many
important papers written before 1963. I have not read all the papers listed
in the bibliography, but I thought a fairly extensive list might be useful.

It is my pleasant duty to thank the many people who have directly or
indirectly contributed to this book. All those whose names are mentioned in
the text have contributed to my understanding of the subject. I owe my initial
interest in gravity effects on fluid flow to Professor Hunter Rouse, in hydro-
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dynamics to Professor John S. McNown, and in hydrodynamic stability to
Professor Chia-Chiao Lin. Dr. George K. Batchelor encouraged the writing
of this book when it was first conceived at Cambridge, England, in 1960.
Through both his work and his personal encouragement, Sir Geoffrey Taylor
has been a constant source of inspiration. I wish to express my appreciation
to Professors Otto Laporte, Louis N. Howard, and John W. Miles, who
kindly read the manuscript and gave many valuable comments and suggestions,
and to Dr. Walter R. Debler, who often participated in my research work
with enthusiasm. I have been much encouraged in this work by Professor
Yuan-Cheng Fung, a friend since 1934, and by Professor Thomas Farrell, a
teacher of good writing to many of his friends. Almost all of my own research
work in the field covered by this book has been sponsored by the Army
Research Office (Durham) and by the National Science Foundation, which
awarded me a senior post-doctoral fellowship in 1959-60 and a research
grant in 1961. To both I am grateful. I also wish to thank Mrs. Jane Lamb
and Miss Joanna Zaparyniuk for their patient and skillful typing of the
manuscript. Finally, it is a great pleasure to express my sincere appreciation
to The Macmillan Company for its painstaking and excellent work in putting
the book in print and to record my special indebtedness to Mr. A. H. McLeod
of Macmillan, for his patient and wonderful cooperation.



GUIDES FOR THE READER

Equation numbers are consecutively numbered only within each chapter.
If an equation and a reference to it are in the same chapter, its number is used
without further identification. If an equation in one chapter is referred to in
the text of another chapter, its number is prefixed by the number of the chapter
in which it appears. Thus, if Eq. (18) in Chapter 1 is referred to in Chapter 3,
it is referred to as (1.18).

In the Bibliography, the italic number following the name of a journal is
the volume number. The numbers (or number) following the volume numbers
of a journal are page numbers (or number).

In a book covering such a wide range of subjects, it is difficult to have a
system of symbols without sacrificing either the one-to-one correspondence
or the customary use of some of the familiar symbols. I have tried to preserve
the usage of familiar symbols and to achieve as much consistency and one-to-
one correspondence as possible. When one symbol is used to denote more
than one quantity, care has been taken to ensure that confusion is not likely
to arise. I often define a symbol immediately after it is introduced, whether
or not it has been defined before. Thus some symbols are defined several
times. In this way I hope to prevent the annoyance readers often experience
when obliged to turn to a list of symbols, or to take on a long journey to
locate the place where a particular symbol is first introduced—sometimes
even when a list of symbols is given, because the terse explanarion in that list
does not suffice. A list of symbols is not provided because I believe it will not
be needed.
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Chapter 1
PRELIMINARIES

I. GENERAL DISCUSSION OF THE EFFECTS OF DENSITY OR ENTROPY
VARIATION

For an inviscid* fluid, the equations of motion are the Euler equations

ou; Ou, ap
p(-5?+u'ﬁ)—_5;+px" (1)
in which ¢ is the time, p is the density of the fluid, p is the pressure, X, is the
ith component of the body force per unit mass, ; is the velocity component in
the direction of x;, with i = 1, 2, and 3, and x,, x,, and x, are Cartesian
coordinates. In (1), repeated indices in one term indicate summation. Thus,
Ou, Oy ou; Ju,
uaa—xa-ula—xl uza—xz u,b}—a.

This convention will be used throughout the book unless otherwise stated.

~ An examination of (1) reveals immediately that a nonuniformity in density
will have two effects for an incompressible fluid. First, since density is a
measure of the resistance of the fluid to acceleration, a nonuniformity in
density is a nonuniformity in inertia, which will affect the flow except in the
trivial case of steady parallel motion. Second, whenever a body force is
present a nonuniformity in density is necessarily accompanied by a nonuni-
formity in body force per unit volume, which in general will affect the flow.
The most important body force on earth is of course the gravitational force.
In most flows of a nonhomogeneous fluid the inertia effect and the gravity
effect of density variation are both present, and their interplay is the most
intriguing aspect of such flows.

* If the fluid is a gas, inviscidness implies that the volume viscosity as well as the ordinary
viscosity is zero.
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If the fluid is compressible, the matter must be scrutinized with more care.
Density may change as a direct consequence of a change in pressure, or an
indirect consequence of a change in speed. But if the change of state of all
the fluid particles is sufficiently slow and heat conduction is neglected, the
entropy of each of the particles will remain constant,* and for each particle
there is a unique relationship between the pressure and the density,

p = f(p). (2

If the entropies of all the particles are the same, this relationship is the same
for the entire field of flow, and the flow is called homentropic. As the density
varies in a homentropic flow from.place to place at the same instant, and (in
unsteady flows) from time to time at the same point, the pressure varies
according to (2), so that the integral dp/p is an exact differential and { dp/p
exists. Then (1) can be written as

ou, ou, Jd [dp

—6-t-+u‘6_x,=-8_x, ";+Xi. 3)
Thus the density p need not be associated with either the acceleration or
the body force per unit mass, but can be absorbed in the term representing
the pressure gradient, so that the direct inertia and gravity effects of density
variation as discussed in the preceding paragraph are no longer manifest.
This is not to say that the flow pattern will be unaffected by the density
variation, because the equation of continuity

op , puy) _

ot w0 @

has to be satisfied together with (2) and (3), and for high enough speeds the
effect of density variation can be very promounced. Indeed, a major part of
ordinary aerodynamics is devoted to a study of Egs. (2), (3), and (4), with the
term X; neglected. For large-scale flows in the atmosphere, the body-force
(or gravity) term must be retained. But so long as (2) holds for the whole
field of flow, gravity affects the flow only through the density, which is de-
pandent upon it. As will be shown later in this book, if the flow is nonhomen-
tropic, gravity has, in addition to this effect through the density, a far-reaching
effect entirely absent in homentropic flows.

For the flow of a compressible fluid, it is therefore more meaningful to
consider, not the effects of density variation, but the effects of entropy
variation. For a gas with a constant ratio (y) of the specific heats ¢, and c,,

Fi constant - e~ %/<? )

* The flow is then called isentropic.
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so that p/p!/? is a function of the entropy S alone. The effects of entropy
variation can be brought out vividly by dividing (1) throughout by p'/”. The

result is
Ou, Ou; 7] b _
(Gt = e ) e ®
Equation (6) as applied to a nonhomentropic gas can be compared with (1)
as applied to a liquid of variable density. The quantity p/p'/” in (6) corre-
sponds to the density p in (1), and the effects of its nonhomogeneity in a gas
are analogous to the effects of density variation in a liquid. We can thus
speak of them as the inertia and gravity effects of entropy variation. In a
gravitational field, nonhomentropy of a gas often has a far-reaching and pro-
nounced effect on the flow, which is represented mathematically by the last
term in (6).

2. THE INERTIA EFFECT OF DENSITY OR ENTROPY VARIATION

The components of acceleration of a fluid particle are given by

ou; Ju;

ot + u, 6_x¢ .

Since the temporal part (du,/0t) is linear in u;, whereas the convective part
(u, Ou,;/0x,) is quadratic in the velocity components, there is no simple law to
evaluate the effect of density (or entropy) variation on the velocity distribu-
tion. The discussion is profitable only if temporal and convective accelerations
are discussed separately.

If the flow is unidirectional* (in the x,-direction, say) so that the accelera-
tion consists only of the temporal part, (1) can be written, with the last term
neglected (because we are concerned at the moment with inertia effects of
density variation),

a[=

pt= -2, ™

the other two equations contained in (1) being trivial, since v, = u; = 0. If
the fluid is incompressible and, in addition, p is constant along the direction
of flow,
op
ox,
Now the general equation of continuity is (4). The equation of incompressi-
bility is, in general,

®

Dp - ap op -
Dt 3 + u,é; = 0,’ (9)

* This situation can be realized by a wave maker in a confined channel at large dlstances
from the wave maker. See Chapter 2, Section 15.
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which states that the density of a fluid particle remains unchanged as the
particle moves about. From (4) and (9) it follows that the equation of con-
tinuity for an incompressible fluid is

ou

e 10

o =0 (10)
whether or not the flow is steady, and whether or not the fluid is homogeneous.
In the special case discussed here, (10) becomes

ou,
— =0, 11
ax, a1n
and (9) becomes, by virtue of (8),
op
X = 12
3 (12)
If p, is a reference density, and the new variables
uy = £—u1 and p=p 13)
Po
are introduced, (12) permits (7) to be written as
Ou} ap’
—_—= - 14
Po 3! axla ( )

and (8) permits (11) to be written as
ou;
0x,

Thus (7) and (11) have been replaced by (14) and (15), which govern uni-
directional flow of a homogeneous fluid of constant density p,. Therefore,
under the stated conditions, the effect of density variation on the velocity
distribution is to make the velocity proportional to that of a homogeneous
fluid subjected to comparable boundary conditions by the factor p,/p. This
is quite reasonable from the physical point of view. ‘

Unfortunately, a transformation similar to that embodied in (13) cannot be
found to reduce the equations governing unsteady flows of a nonhomen-
tropic gas to those governing unsteady flows of a homentropic gas, even under
the restriction of unidirectional flow and an equation like (8), with p replaced
by pp~'/".

If the flow is steady, so that the acceleration is purely convective, the inertia
effect of density variation on the motion of an incompressible fluid can be
evaluated by a rule different from but as simple as (13). With the body-force
term neglected, (1) is now

= 0. (15)

Ou, ap
puag = _a_x‘c (16)
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The equation of continuity is still (10), but the equation of incompressibility
now has the form

u,— = 0. an
If the new variables [Yih, 1958}

W= [Lu, p=p 18)
Po

are introduced, (16) and (10) can be written, by virtue of (17), as

, Ou op’
oMok, = Taxy (19)
and
ou,
= O (20)

But (19) and (20) govern the flow of a homogeneous fluid of constant density.
Therefore it can be stated that, with gravity effects neglected, to every flow
(called associated flow for convenience) of a homogeneous fluid of constant
density, rotational or irrotational, correspond infinitely many stratified flows
which are related to the associated flow (defined by «; and p°) through equa-
tions (18). Thus, with gravity effect neglected, every known flow in classical
hydrodynamics represents a class of stratified flows with the same flow
pattern but different velocities.

A similar development for a compressible fluid with variable entropy is
possible if its flow is steady, and if the change of state of each fluid particle is
isentropic. Isentropy presumes a gradual change of state without heat con-
duction, and is expressed mathematically by the equation

DS as +u as
Dt ot * dx,
in which S is the entropy. If the specific heats of an ideal gas are constant,
plp'"" is a function of S alone, as stated in (5). Hence isentropy can also be

=0, 21

expressed by
7} 0 p
(5;+ '6x)( ,,y)_o. (22)
For steady flows, the equation of isentropy is
9 (r

Now the equations of motion are stlll (16), with the gravity term neglected.
The equation of continuity is now, for steady flows,
dpu,)
0x,

= 0. (24)



