SOFTWARE
TOOLS
FOROS/2

Creating Dynamic
Link Libraries

Michael J. Young

e ———— Y ——cL, T
ot} —— -

SOFTWARE
TOOLS
FOROS/2

Creating Dynamic
Link Libraries

Michaél J. Young

A
\A4

Addison-Wesley Publishing Compaay, Ine.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokye Madrid San Juan '

Many of the designations used by manufacturers and sellers to distin-
.guish their products are claimed as trademarks. Where those designations
- appear in this book and Addison-Wesley was aware of a trademark claim,
the designations have been printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

Young, Michael J. '
Software tools for OS/2 : creating dynamic link libraries / Michael J.
Young.
p. cm.
Bibliography : p.
Includes index.
ISBN 0-201-51787-6
1. 0S/2 (Computer operating system) 1. Title.
QA76.76.063Y676 1989

005.4’469--dc20 89-34203
CIP

Premar, o

Copyright © 1989 by Michael J. Young

All rights reserved. No part of this publication may be reproduced,-
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Production Editor: Amorette Pedersen
Cover Design by: Doliber Skeffington Design
Set in 11-point New Century Schoolbook by Benchmark Productions

ABCDEFGHIJ-AL-89
"First Printing, July, 1989

INTRODUCTION

When OS/2 was introduced in 1987, it was accompanied by a myriad of
new concepts and terms. One of the most prominent of these was the
expression dynamic-link library.

Briefly, a dynamic-link library is a collection of subroutines stored in a .
disk file, which may be read into memory and called by application
programs. The process of loading and accessing a dynamic-link library is
known as dynamic linking. Traditionally, a subroutine is not stored in
a separate disk file, but rather is incorporated directly into the executable
file of the program that calls it.

Initially, the concept of dynamic linking may seem esoteric, and the
distinction between a dynamic-link function and a normal subroutine
may appear academic. However, after reading this book and after working
with the operating system, you will realize that dynamic linking is one of
the most important features of 0S/2, and that dynamic-link libraries have
far reaching and practical significance for both software developers and
system users. Here are two primary reasons for the unique importance of
dynamic linking. .

First, the vast collection of services that the operating system provides
for application programs (known collectively as the Application Program
Interface) is implemented as a set of dynamic-link libraries. The dynamic-
linking mechanism allows programs written in high-level languages to
call these services using the standard function calling protocol. Thus,
through dynamic linking, the facilities of the operating system are made
readily accessible to programs, and form an integral part of OS/2 applica-

xiil

xiv SOFTWARE TOOLS FOR 05/2

~ tions. It is important to understand dynamic-linking so that you can make
optimal use of these services when writing application programs.

A second reason for the significance of dynamic linking is that you can
package your own collections of subroutines as dynamic-link libraries.
Whether you are developing a set of functions for use within your own
applications, or you are preparing a function module to be sold commer-
cially, a dynamic-link library provides a convenient and efficient vehicle
for implementing your module.

The MS-DOS programming world has proven the importance of using
packages of prewritten routines for developing application programs.
Such function libraries allow the application programmer to focus on the
main program logic, and eliminate the need to develop routines for
tangential tasks such as managing windows, performing screen I/O, and
handling indexed files. In fact, creating and distributing function libraries
currently forms the basis for an entire software industry. The added
complexity of OS/2 and the Presentation Manager will intensify the need
for using prewritten function libraries when developing OS/2 applica-
tions.

Function libraries for OS/2 could be packaged in the same manner as
those for MS-DOS (typically, either as source code or as binary code within
standard object modules). Implementing subroutine packages as
dynamic-link libraries, however, offers many advantages. For example,
since dynamic-link libraries are stored in separate disk files, executable
program files remain small and fast loading. Also, once a dynamic-link
library has been read into memory, the code it contains can be shared by
several simultaneous application programs; consequently, computer
memory is conserved. Furthermore, a program can call a given dynamic-
link library regardless of the language in which it is wntten thus,
dynamic-link libraries form truly generic software tools.

Finally, because functions included in dynamic-link libraries are called
in the same manner as the basic_services of the operating system,
dynamic-link libraries can be used to form seamless operating system
extensions. In fact, major operating system extensions, such as the
Presentation Manager, are implemented as collections of dynamic-link
libraries. You can also replace certain OS/2 services with your own

INTRODUCTION xv

dynamic-link library routines. Specifically, you can replace many of the
basic functions for managing the screen, keyboard, and mouse.

As you read this book, you will learn other advantages of dynamic
linking, and should come to appreciate the flexibility and elegance of this
mechanism.

This book will help you understand and appreciate many of the features
of dynamic linking. More importantly, however, it is a practical handbook,
written to show you how to create dynamic-link libraries. To date, the
documentation on writing dynamic-link libraries is sketchy and spread
out over many sources. This book gathers this diverse information into a
single source, and offers many tips for avoiding problems and optimizing
your use of the dynamic-linking mechanism. The book also provides many
example listings; most of the discussions begin with concrete program-
ming examples, and subsequently add theoretical and general informa-
tion to deepen your understanding of the basic techniques.

Note finally that dynamic-link libraries developed according to the
techniques given in this book can be used both by basic protected-mode
programs and by Presentation Manager applications. Thus, whether you
are developing a text-mode OS/2 program or a Presentation Manager
application, you will find the programming methods presented in this
book relevant to your work.

An Overview of the Book

The treatment of dynamic-link libraries in this book can be divided into
three primary areas of emphasis: Chapters 1, 2, and 8 describe how to use
dynamic-link libraries; Chapter 3 explains how dynamic-link libraries
work, and the remaining chapters show how to create dynamic-link
libraries. ,

Chapter 1 summarizes the techniques for writing a basic OS/2
protected-mode program, and Chapter 2 outlines the methods for develop-
ing an elementary Presentation Manager application. These two chapters
serve to explain (or review) basic OS/2 programming techniques before
the book embarks on the more advanced techniques required to develop
dynamic-link libraries. These chapters also show how to call dynamic-link
functions from the two primary types of OS/2 programs.

xvi SOFTWARE TOOLS FOR 0S/2

Chapter 3 explains how dynamic-link libraries work, and lays the
theoretical groundwork for understanding the techniques presented in
the remainder of the book. .

Chapter 4 presents the techniques for writing a simple dynamic-link
library, and provides a general overview of the entire dynamic-link library
development process. Dynamic-linking, however, is a highly flexible
mechanism that offers many options and variables. The techniques
presented in Chapter 4 use only the simplest of these options; each of the
remaining chapters in the book explores one or more of the advanced
options.

Chapter 5 describes how to define both shared and non-shared data
segments, so that a dynamic-link library can either share data among all
programs that call the library, or provide data that is private to each
program.

Chapter 6 shows how to create dynamic-link library initialization and
termination routines. These routines are especially valuable for dynamic-
link libraries that manage resources shared by several programs.

Chapter 7 describes the special versions of the C runtime library that
support multiple-thread applications and dynamic-link libraries. It ex-
plains the steps that you must take to allow a program or dynamic-link
library to use one of these libraries.

Chapter 8 shows how a program can explicitly load a selected dynamic-

link library at runtime (normally all referenced dynamic-link libraries
are automatically read into memory when the program is loaded).
*" Chapter 9 summarizes the steps for providing a real-mode version of
your dynamic-link library, so that this library can be used by programs
designed to run under either real or protected mode, which are known as
dual-mode programs.

Almost all of the example listings given in chapters 1 through 9 are
written in the C language. Chapter 10, however, describes the methods
for writing a dynamic-link library in assembly language. This chapter
also shows how to use assembly language to write dynamic-link functions
that execute with /O privilege (permission to use certain restricted
machine instructions).

The Glossary at the end of the book defines many of the technical terms
you may encounter while reading this book or other literature on OS/2.

INTRODUCTION xvii

Finally, the Bibliography cites a number of useful books on OS/2 program-
ming, C and assembly language, and the architecture of the 80286
processor.

There are several special uses for dynamic-link libraries that are not
covered in this book. For example, these libraries can be used to store
0OS/2 resources (a form of read-only data read stored within an ex-
ecutable file). Also, dynamic-link functions can be used to replace certain
0S/2 services (see the documentation on the KbdRegister, MouRegister,
and VioRegister OS/2 functions). The basic information presented in this
book, however, should make it easy to employ dynamic-link libraries for
these and other special uses you may encounter.

How to Use the Book

If you feel the need to review fundamental OS/2 and Presentation
Manager programming techniques, you should begin by reading chapters
1 and 2. In all cases, you should read Chapters 3 and 4; these two chapters
constitute the heart of the book. Chapter 3 describes the basic
mechanisms underlying dynamic linking, and Chapter 4 presents the
basic techniques for creating a dynamic-link library.

Once you have finished Chapters 3 and 4, you can read the remaining
chapters in any order. Each of these chapters discusses one or more
specific features of dynamic-link libraries, and you can select from among
them according to your particular needs.

Finally, you should use the comprehensive glossary provided at the end
of this book. The literature on OS/2 programming and the C language
abounds with technical terms, newly coined expressions, and words used
with special meanings. The book employs many of these terms without
stopping to define them (or perhaps they are defined only the first time
they appear). Accordingly, be sure to use the glossary if a term is un-
familiar, or if you are uncertain of the meaning of a word within a specific
context. ‘

Tools and Requirements

Developing OS/2 programs and dynamic-link libraries requires a large
number of software tools. The examples in this book were written using

xvili SOFTWARE TOOLS FOR 0S/2

the Microsoft 0OS/2 Software Development Kit, which was a large (and
expensive) collection of software tools supplied as a series of shipments,
beginning with pre-release software and culminating with the final retail
products. The required tools are now available as the following separate
retail products: the Microsoft C compiler version 5.1 (essential), the
Microsoft Macro Assembler version 5.1 (most of the examples in the book
can be prepared without the assembler), the Microsoft Programmer’s
Toolkit version 1.1 (containing documentation on the OS/2 API functions,
and a variety of optional utilities), and IBM OS/2 version 1.1 (the operat-
ing system itself, obviously required).

The programming examples in the book are based upon this collection
of software tools. Accordingly, it will be easier to use the book if you have
these specific tools (or later versions of these tools). However, you may be
able to develop OS/2 programs and dynamic-link libraries using tools
supplied by other vendors; you may also be able to use a high-level
language other than C. In either of these cases, you can employ the basic
concepts from this book but will need to translate the specific implemen-
tation details according to the tools you are using.

Note that the term "programmer’s reference," which you will see many
times in this book, is a general description referring to either of the
following two specific reference books cited in the bibliography: the
Microsoft Programmer’s Reference (supplied with the Programmer’s
Toolkit) or the IBM OS /2 Technical Reference. These reference books fully
document each of the operating system functions. The most important
0S/2 functions used in this book are described in accompanying figures;
however, for additional details on these functions, as well as descriptions
of other functions, see either of these two reference books.

Also helpful for writing OS/2 programs are third-party function
libraries and programmer’s tools. See the Software Offer at the end of the
book for a description of several such products I have developed. These
products supply complete source code, and are thus valuable as learning
resources as well as for facilitating program development.

Finally, this book assumes a working knowledge of C and assembly
language, and of OS/2 programming basics. If you need further back-
ground knowledge in any of these areas, see the Bibliography for the titles
of useful books. '

TABLE OF CONTENTS

INTRODUCTION

An Overview of the Book
How to Use the Beok
Tools and Requireinents

CHAPTER 1
MAKING PROTECTED-MODE PROGRAMS
Developing a Simple Protected-Mode Program
Using the OS/2 API
DosSleep
KbdCharln
DosExit
VioWrtTTy
. Building the Program
Adding Multitasking
DosCreateThread

Adding Interprocess Communication
DosSemRequest
DosSemClear

CHAPTER 2
PRESENTATION MANAGER PROGRAMS

Presentation Manager and Dynamic-Linking
The Source Files

xiii

37
38
39

vii

vili SOFTWARE TOOLS FOR 0S/2

The C Source File
Initialize the Presentation Manager
WinBeginPaint
WinCreateMsgQueue
WinCreateStdWindow
WinDefWindowProc
WinDestroyMsgQueue
WinDestroyWindow
WinDispatchMsg
WinDrawText
WinEndPaint
WinGetMsg
WinlInitialize
WinMessageBox
WinQueryWindowRect
-WinRegisterClass
WinTerminate
Create a Message Queue
Register a Window Class
Create a Standard Window
Process Window Messages
Release Presentation Manager Objects

The Supporting Files
The Resource Script
The Header File
The Module Definition File
The MAKE File

CHAPTER 3
HOW DYNAMIC-LINK LIBRARIES WORK

The Process
Compiling the Program
Linking the Program
Loading the Program
Calling the Dynamic-Link Function
Terminating the Program

The Uses of Dynamic Linking
Dynamic-Link Libraries within the Structure of 0S/2

40
49
50
50
51

.51

51
52
52
52
52

53
53
53
54
54
56
55
56

63

64
64
65
65
66

69

69
70
71
78
84
84

86
89

7 og L

L€

14

CHAPTER 4
CREATING A DYNAMIC-LINK LIBRARY

An Overview of the Process

An Example Dynamic-Link Library
Writing the C Source Code
Writing the Supporting Files
Preparing the Dynamic-Link Library

Using the Dynamic-Link Library

CHAPTER 5
SHARING DATA

Creating an Instance Data Segment

Creating a Global Data Segment
Virtual Memory

Creating Instance and Global Data Segments
Using Two Source Files

!
Using a Single Source File ¢

Using Instance and Global Data Segments

CHAPTER 6
INITIALIZATION AND TERMINATION
Writing Initialization Routines b
Define the Entry Point
Write the C Initialization Function }
Specify When the Routine is to be Callec
Testing the Initialization Routine

Writing Termination Rout.nes
DosExitList
Testing the Termination Routine

CHAPTER 7
- USING THE C RUNTIME LIBRARY
Muitiple-Thread Applications
Single-Thread Dynamic-Link Libraries

TABLE OF CONTENTS Ix

93
94

97

109
122
131

133

141
143

148
150

155
155
161

166

175

176
176
183
184
186

187
195
198

199 -
200
208

X SOFTWARE TOOLS FOR 0S/2

Multiple-Thread DLLs and Applications

Conclusion

CHAPTER 8
USING RUNTIME DYNAMIC LINKING

The Basic Steps
Step 1
DosLoadModule
Step 2
DosGetProcAddr
Step 3 '
Step 4
DosFreeModule

Advantages of Runtime Dynamic Linking
The Disjoint Descriptor Space
An Example Application

CHAPTER 9
REAL-MODE VERSION OF YOUR LIBRARY

Creating Dual-Mode Programs

Writing a Real-Mode Version of a DLL
Use the OS/2 Family API Functions
Observe Real-Mode Restrictions on Family API Functions
Do Not Use the C Runtime Library
Write Your Code Specifically for Real Mode
Differences between Real and Protected Modes

Real-Mode Versions

CHAPTER 10
ASSEMBLY LANGUAGE DLLS
General Guidelines for Assembly Language
The Assembly Language Source Code
The Module Definition File

The Client Program
The MAKE File

1/O Privileged Dynamic-Link Functions

213
224

227

228
228
228
230
231
233
234
235

235
236
240

251
252

258
269
269
270
270
271

271

277
278

290

290
291

TABLE OF CONTENTS xi

DosPortAccess 302

PosCLIAccess 302

DosR2StackRealloc 304
GLOSSARY 307

BIBLIOGRAPHY 331

CHAPTER 1

MAKING PROTECTED-MODE PROGRAMS

This chapter explains the basic steps for writing protected-mode
programs under OS/2. The applications described here are designed to be
run from the OS/2 full-screen command prompt. Although many of these
programs can also be run within a window of the Presentation Manager,
they cannot use the full set of Presentation Manager features. Chapter 2
describes the basic methods for developing programs specifically for the
Presentation Manager—these programs have free access to the facilities
of this environment including its extensive set of graphics functions.
Both chapters serve several purposes. First, they provide a brief intro-
duction to (or review of) basic OS/2 programming concepts that are
important for understanding the more advanced techniques involved in
developing dynamic-link libraries. Next they reveal the general context
in which dynamic-link libraries are used. Dynamic-link libraries are not
freestanding entities; they are software tools called by applications, and
must closely integrate their activities with those of the calling process.
Finally, the chapters show how to use dynamic-link libraries. There are
few OS/2 applications that do not call dynamic-link library functions—
the example programs in these chapters use the dynamic-linking
mechanism to access the services of the operating system. (Subsequent
chapters will explain how dynamic-link libraries work, how to create your

2 SOFTWARE TOOLS FOR 0S/2

" own dynamic-link libraries to provide custom extensions to the operating
system services, and how to package your own collections of routines.)

In this chapter you will discover that you can easily use dynamic-link
libraries without knowing how they work or how they are created. From
the application programmer’s vantage, using a dynamic-link library
function is almost identical to calling a subroutine contained in a conven-
tionally linked library; such as the C runtime library. The simplicity of
. using dynamic-link libraries adds to their importance as software tools;
it.also makes it possible to postpone the discussion of their inner workings
until you have explored several examples of their use.

First you will see how to develop a simple protected-mode application—
a variation on the archetypal "hello, world" C program; then add multi-
tasking features to this example; and finally, how to coordinate the
activities of the separate program tasks using interprocess communica-
tion. Consequently you will learn the fundamental steps to prepare any
protected mode application and how to use several of the advanced
features of 0S/2. The chapter will emphasize the differences between
developing protected-mode programs for OS/2 and developing real-mode
programs for MS-DOS.

Developing a Simple Protected-Mode Program

Figure 1-1 lists a C source file destined to produce a simple protected-
mode OS/2 program. This program repeatedly prints a message on the
screen and terminates it when the user presses a key. The message
consists of 11 lines form a box containing the siring "Hello from main."
The program pauses for 1/2 second between messages. ,

.. Like most C prograins, this example contains calls to external functions
. (functions not defined within the source file), namely, DosSleep, Kbd-
Charln, DosExit, and VioWrtTTY. As you can see from the source code,
these functions perform most of the work of the program. Although the
program is written in the same manner as a typical MS-DOS apnlication,
there are two important features of these external function calls that are
unique to OS/2.

MAKING PROTECTED-MODE PROGRAMS 3

Figure 1-1
/*
Figure 1-1

You can prepare this program using the following commands:

cl /c /w2 /G2 /Zp FIGl_l.C

link /NOI /NOD FIG1l_1.0BJ,, NUL, SLIBCE.LIB 0S2.LIB, FIGl_6.DEF
*/
#define INCL_DOS
#define INCL_SUB

#include <082.H>

void PrintMessage (void); /* Prints a message on the screen. */

void main (void)

{

KBDKEYINFO Key: /* Holds ’'KbdCharIn’ information*/
for (::)
{
PrintMessage (): /* Print a message on the screen*/
DosSleep /* Create a delay. */

(500L) ; /* 1/2 second. */

5,

