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Preface

This is a book about the use of digital computers in the real-time control of
dynamic systems such as servomechanisms, chemical processes, and vehicles
which move over water, land, air, or space. The material requires some under-
standing of the Laplace transform and assumes the reader has studied a first
course in linear feedback controls. The special topics of discrete and sampled-
data system analysis are introduced, and considerable empbhasis is given to the
z-transform and the close connections between the z-transform and the Laplace
transform.

The emphasis of the book is on the design of digital controls to achieve good
dynamic response and small errors while using signals that are sampled in time
and quantized in amplitude. Both transform (classical control) and state-space
(modern control) methods are described and applied to illustrative examples.
The transform methods emphasized are the root-locus method of Evans and the
log-magnitude and phase -versus—log-frequency method of Bode; to aid in the use
of Bode's method, the w-plane is introduced. The state-space methods devel-
oped are the technique of pole assignment augmented by an estimator (observer)
with feed-forward or zero assignment included, and optimal quadratic-loss con-
trol. On the latter topic, the emphasis is on the steady-state constant-gain solu-
tion: the results of the separation theorem in the presence of noise are stated but
not proved. The topic of model making is treated via statistical identification of
parameters by least squares and maximum likelihood.

The material in the book which is new to the student is the treatment of signals
which are discrete in time and amplitude and which must coexist with those that
are continuous in both dimensions. The philosophy of presentation is that the
new material should be closely related to material already familiar, and yet, by the
end, a direction to wider horizons should be indicated. This approach leads us,
for example, to relate the z-transform to the Laplace transform and to describe the
implications of poles and zeros in the z-plane to those known meanings attached to
poles and zeros in the s-plane. Also, in developing the design methods we relate
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the digital control design methods to those of continuous systems. And yet,
pointing to more sophisticated methods, we present the elementary parts of
quadratic-loss gaussian design with minimal proofs to give some idea of the use of
this powerful method and to motivate the study of its theory more thoroughly
later. The subject matter is particularly suitable for treatment in a laboratory set-
ting and algorithms suitable for programming on a laboratory computer are fre-
quently given.

To review the chapters briefly, the methods of linear analysis are presented in
Chapters 1 to 4. Here are introduced the z-transform in Chapter 2, methods to
generate discrete equations which will approximate continuous dynamics in
Chapter 3, and combined discrete and continuous systems in Chapter 4. This last
chapter introduces the sampling theorem and the phenomenon of aliasing. The
basic deterministic design methods are presented in Chapters 5 and 6, the root-
locus and Bode methods in Chapter 5, and pole placement and estimators in
Chapter 6. The state-space material assumes no previous acquaintance with the
phase plane or state space, and the necessary analysis is developed from the
beginning. Some familiarity with simultaneous linear equations and matrix nota-
tion is expected, and a few unusual or more advanced topics such as eigenvalues,
eigenvectors, and the Cayley-Hamilton theorem are presented in Appendix C. In
Chapter 7 the nonlinear phenomenon of amplitude quantization and its effects on
system error and system dynamic response are studied. These first seven
chapters comprise the syllabus of a ten-week first course on digital control.

Chapter 8 introduces parametric identification by starting with deterministic
least squares, introducing random errors, and completing with an algorithm for
maximum likelihood. In Chapter 9 is introduced optimal quadratic loss control:
first the control by state feedback is presented and then the estimation of the state
in the presence of system and measurement noise is developed, based on the re-
cursive least-squares estimation derived in Chapter 8. The final chapter, Chapter
10, presents methods of analysis and design guidelines for the selection of the
sampling period in a digital control system. In such a work, the selection of nota-
tion is always critical to be sure our symbols aid rather than interfere with
learning. We list at the front of the book a glossary of terms which we use and
which we commend to those teachers who use this book.

At Stanford University, two courses based on this material are given. The
first course covers Chapters 1 through 7 and follows a course in linear control
which may have used Dorf (1980) or Ogata (1970). The second course covers
Chapters 8 through 10. Both courses are heavily dependent on laboratory work
as a supplement to the lectures for learning. A very satisfactory complement of
laboratory equipment is a digital computer capable of running BASIC and having
an A/D and a D/A converter, an analog computer with ten operational amplifiers,
and a strip recorder.

As do all authors of technical works, we must acknowledge the vast array of
contributors on whose work our own presentation is based. The list of references
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gives some small measure of those to whom we are in debt. On a more personal
level, we wish to express our appreciation to those responsible for making Stan-
ford an exciting place to work and to those students of E.207 and E.208 for whom
this book was written. We hope its publication will contribute to the education of
their successors at Stanford and elsewhere.

We would like especially to express our appreciation to Judy Clark, who
aided us in so many ways in the preparation of the notes which became the manu-
script which became this book.

Stanford, California G. F. F.
January 1980 J.D. P



CONTROL GLOSSARY
Plant

Continuous case:

Fx + Gu(r — \) + G,w
pure time delay

Discrete:
Xpe1 = Px + Tu + Tywy

]

state = N, X lorn x 1

I

control = N, X lorm X 1

input disturbance or plant noise N,, X 1

continuous system matrix
discrete system matrix

continuous-control input matrix

-0 e m E g
I

= discrete-control input matrix
G, = plant-noise input matrix

=
I

discrete plant-noise matrix

€l
1

&w = average value of plant noise

R, = plant-noise spectral density matrix

Ew — w)(w — W) = R,8(#) continuous
= Rw discrete

M(F) = p; = open-loop poles = ‘*x’’ on root locus
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Plant output or sensor equations
Continnous system:

y=Hx+ Ju+vy
Discrete svstem:

y=Hgx + Ju+v

y = output measurements = Ny, X lorp X |

v = output noise or disturbance = Ny x 1orp x 1
H = continuous output matrix

J = continuous-plant direct transmission matrix
H, = discrete-system output matrix

J4 = discrete-plant direct-transmission matrix

v; = €év = average value of output noise = sensor bias

R, = measurement-noise spectral density matrix
Ev — vi)(v — v;)T = R,8(1) continuous
= R, discrete
Control law
u = —Kx or u= —-Kx

Control characteristic polynomial
a($) or adz)
MF — GK) = r;, = roots of closed-loop characteristic equation
(**A’" on root locus)
Controllability matrix (n = N;)
¢ =[G FG:- - - F"'G] or [T &r: - - & ']
Estimator/observer
Continious:
x=Fkx+Gu+ Ly -
y=Hx + Ju
Discrete:
One-step prediction
Rpyy = O% + Tue + Lyx — ¥i)
Vi = Hake + Jauy
Current estimator

Xer1 = DX, + Ty, Time update o
Xear = Xpor + L{Yes1 — Viyy) Observation update %%%
Al
&
ek



ALPHABETICAL GLOSSARY

Yirr = HoXpyy Ja=0)
= estimator gain matrix

=
|

P = &(x — x)(x — X)7 = &xx” = state error covariance matrix
R, = &xx")
R. = &uu”
Controller
Continuous:
X, = Ax, + By + Mr
u=Cx, + Dy + Nr
Discrete:
xAk + 1) = Ax (k) + By(k) + Mr(k)

u(k) = Cxq(k) + Dy(k) + Nr(k)

x. = controller state
r = reference input = N, x 1
A = Controller system matrix

B = Controller input distribution matrix

C = Controller output matrix

D = Controller direct-transmission matrix

M = Controller reference-input distribution matrix

N = Controlier reference-input direct transmission matrix

Optimal control

t
¥ = f Ix, u, 1) dt + y(x;, t5)
to
Quadratic loss
tf
F=8 {J x7Q;x + u"Quu) dr + x,TQox,}
to

Discrete quadratic loss

N
Ff=¢ [Z (x"Qux + u'Qeu) + XSQoxN}
k=j

ALPHABETICAL GLOSSARY

A Controller system matrix
B Controller input matrix

xv



xvi GLOSSARIES

Controller output matrix

Controller direct matrix

Plant system matrix

Plant input matrix

Plant disturbance input matrix

Plant output matrix

Discrete plant output matrix

Plant direct matrix

Discrete plant direct matrix

Control gain

Estimator gain

Controller-reference-input distribution matrix
Controller-reference-input direct matrix

EXXT

Loss matrices, state, control, terminal, respectively
Spectral density matrices of w, v; covariance matrices of x, u
Sampling period

Control

Measurement noise

Plant or input noise

Plant state

Xc Controller state

y Output

ey Qe Control and estimator characteristic polynomials
r Discrete plant control input matrix

I, Discrete plant noise input matrix

A Plant delay time or transportation lag

(] Discrete plant system matrix
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1 / Introduction

1.1 PROBLEM DEFINITION

The control of physical systems with a digital computer is becoming more and
more common. Aircraft autopilots, mass transit vehicles, oil refineries, paper-
making machines, and countless electromechanical servomechanisms are among
the many existing examples. Furthermore, many new digital control applications
are being stimulated by microprocessor technology including control of various
aspects of automobiles and household appliances. Among the advantages of
digital logic for control are the increased flexibility of the control programs and the
decision-making or logic capability of digital systems which can be shared with the
control function to meet other system requirements.

The digital controls studied in this book are for closed-loop (feedback)
systems in which the dynamic response of the process being controlled is a major
consideration in the design. A typical topology of the elementary type of system
which will occupy most of our attention is sketched schematically in Fig. 1.1.
This figure will help to define our basic notation and to introduce several features
which distinguish digital controls from those implemented with analog devices.
The process to be controlled is called the plant and may be any of the physical pro-
cesses mentioned above whose satisfactory response requires control action.

By “‘satisfactory response’” we mean that the plant output, y(r), is to be forced
to follow or track the reference input, r(¢), despite the presence of disturbance
inputs to the plant [w(f) in Fig. 1.1] and despite errors in the sensor [represented
by v(r) in Fig. 1.1]. It is also essential that the tracking succeed even if the
dynamics of the plant should change somewhat during the operation. The
process of holding y(r) close to r(r), including the case where r = 0, is referred to
generally as the process of regulation. A system which has good regulation in the
presence of disturbance signals is said to have good disturbance rejection. A
system which has good regulation in the face of changes in the plant parameters is
said to have low sensitivity to these parameters. A system which has both good
disturbance rejection and low sensitivity we call robust.
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w(?)

+ l
() é m*D [ Digi u(kT) u(r)
<:) R gital N | Plantor »(1)
A/D "| computer » D/A v vehicle

Clock J

$70)]

Sensor <+

!

v(?)
Notation:
r = reference or command inputs
u = control or actuator input signal
)y = controlled or output signal
§ = instrument or sensor output, usually an approximation to or estimate

of 3. (For any variable, say 8, the notation 6 is now commonly taken
from statistics to mean an estimate of ).

r—J = indicated error

r—y = system error

disturbance input to the plant

é
¢
w

oo nonon

v disturbance or noise in the sensor
A/D = analog-to-digital converter
D/A = digital-to-analog converter

Fig. 1.1 Basic control system block diagram.

The means by which robust regulation is to be accomplished is through the
control inputs to the plant [u(z) in Fig. 1.1]. It was discovered long ago' that a
scheme of feedback wherein the plant output is measured (or sensed) and com-
pared directly with the reference input has many advantages in the effort to design
robust controls over systems which do not use such feedback. Much of our effort
in later parts of this book will be devoted to illustrating this discovery and demon-
strating how to exploit the advantages of feedback. However, the problem of
control as discussed thus far is in no way restricted to digital control. For that we
must consider the unique features of Fig. 1.1 introduced by the use of a digital de-
vice to generate the control action.

We consider first the action of the analog-to-digital (A/D) converter on a
signal. This device acts on a physical variable, most commonly an electrical volt-
age, and converts it into a stream of numbers. In Fig. 1.1, the A/D converter acts
on the indicated error signal, é, and supplies numbers to the digital computer. It
is also common for the sensor output, §, to be sampled and have the error formed
in the computer. We need to know the times at which these numbers arrive if we
are to analyze the dynamics of this system.

t See especially the book by Bode (1945).



