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Preface

In a sense, theoretical chemistry has existed as long as scientists have
tried to understand chemical phenomena. However, it has been only recently
that theoretical chemistry has grown into a mature field. Three develop-
ments, all relatively recent, have spurred this growth. First, at the end of
the nineteenth century the foundations of statistical mechanics were laid.
As a result, the bulk properties of chemical systems could be calculated from
their microscopic dynamics. Second, during the first third of the twentieth
century, quantum mechanics was developed, giving a satisfactory theory for
the microscopic dynamics of chemical systems. Finally, in the past two
decades, fast electronic computers have made accessible the full richness of
quantum and statistical mechanics for the theorctical description of complex
chemical systems.

Despite the maturity of theoretical chemistry, there are very few journals
or review series devoted to all aspects of this field. It is hoped that this
serial publication will fill, in part at least, this gap. Articles concerning all
aspects of theoretical chemistry will be published in these volumes. Articles
concerning experimental chemistry which pose or answer questions of the-
oretical interest may also be published from time to time.

In this volume a multisided phase of periodicity is presented. Winfree is
concerned with the principles that relate the geometry of the visible activity
patterns to the less obvious geometry of reaction kinetics. His procedure is
analogous to Gibbs geometrizing of thermodynamics. He is chiefly concerned
with biological periodicities. Field is concerned with chemical periodicities
and how they arise and gets explicitly involved with a variety of chemical
mechanisms. Troy is concerned with the mathematical approach to nerve
impulse transmission and to an interpretation in depth of several other
chemical reactions.

Hess and Chance give a historical introduction to a variety of biological
periodicities controlled by enzymes and then develop models of glycolytic

X1



Xii Preface

oscillations in more detail. They classify the enzyme functions in the latter
case into promotion of four processes.

1. An input supplying the substrate
2. The primary oscillator enzyme
3. A feedback function

4. A sink

From DeHaan and DeFelice we get an in-depth picture of heart behavior
together with an interpretation of this behavior at the molecular level.
Ortoleva provides a very general overview of periodicities and shows they
are wide ranging throughout nature. Finally, Oster and Ipaktchi treat the
ecological problems associated with population growth and stability and
illustrate the complexity of the matters requiring attention.

Henry EvriNG
DouGLAs HENDERSON
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2 A. T. Winfree
I. Introduction

During my first summer of graduate school, 12 years ago, I had the good
fortune to work in Robert DeHaan’s laboratory in the Carnegie Institute of
Embryology in Baltimore. More than whatever I learned about heart cells,
remember Bob’s recurrent enquiry: “ What question are you asking?” That
question never failed to stop frantic agitation, whether of tongue or of hands,
dead in its tracks. What question am [ asking? It is particularly important to
answer clearly at the outset of this particular essay, which is less closely tied
than 1 would like to either to quantitative experiment or to rigorous
mathematics.

The question concerns a new class of phenomenon: a persistent rotating
mode of activity in media that can alternatively lie stably inactive, except for
giving a pulselike response to occasional stimuli. Such media include nerve
membrane, heart muscle, the smooth muscle of stomach and gut, certain
primitive embryos, and, since 1970, a feverishly studied inorganic chemical
reaction.

And what am I asking about these self-organizing patches of rotary acti-
vity? At this stage, nothing rigorously quantitative, nothing steadfastly
reductionistic, but something fuzzier, something like “ How can we begin to
think about them? What principles relate the geometry of the visible activity
patterns to the less obvious geometry of reaction kinetics? How can such
geometric principles be made at least compatible with physical chemistry?
How can they be maneuvered to show us how rotors come about and how
they cease to exist? What alternative modes of spatially self-organizing
chemical activity can be anticipated?”

With mathematicians everywhere busily geometrizing everything from
relativity theory through thermodynamics to classical mechanics, it would
seem at least sporting to have a go at chemical dynamics (e.g., see Oster and
Perelson, 1974). Perhaps the game will enrich its flavor by assimilating the
rotating waves of chemical activity first discovered by Zhabotinsky (1970).

The question posed here, then, is “ What aspects of the observed chemical
oscillations and rotating structures can be understood, at least qualitatively,
in geometric terms adaptable to a variety of underlying molecular
mechanics?” In attempting an answer, we come upon a principle of poten-
tially wider application in Section II1,B,2. 1 use it only heuristically, but I
suspect more rewarding sequelae await its proper mathematical develop-
ment. The principle stems from Poincare’s introduction of “ phase portraits ”
(Section ILA), which catalyzed deeper understanding of ordinary differential
equations, and therefore of dynamics in well-stirred reactors. No com-
parably intuitive and general method has emerged to save us from partial
differential equations, such as inevitably arise in spatially distributed reac-
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tions. And there are good reasons why not. Convection and turbulence,
surface absorption, electrostatic effects of ion concentrations, and so on,
really do make the subject of reaction morphology a fairyland of mathema-
tically complicated special phenomena [e.g., see Aris’ book on reaction and
diffusion interactions (1975)].

Ten years ago the special case of unstirred isothermal reaction in hom-
ogeneous phase, without interfacial exchanges, without hydrodynamic tran-
sport, attracted the attention of few specialists, and then mainly for
instabilities of the spatially uniform solution. Even this interest is lost if the
reactants have nearly equal diffusion coefficients. But all that has changed
since the oscillating reaction of Belousov (1959) was parlayed into a spatially
self-organizing reaction by Zaikin and Zhabotinsky (1970). The experimen-
tal convenience and dramatic quality of these phenomena have unleashed an
explosive proliferation of work, both experimental and mathematical, on
what seemed previously an unpromising special case: isothermal, isodiffu-
sive, hydrodynamically inert, without surface phenomena.

And, to get to the point, it is in precisely that case that Poincare’s phase
portrait methods may once again provide a considerable aid to intuition, if
introduced through the geometrical trick of Section III,B,2. I intend that to
be the main point of this article, apart from its supportive context of allu-
sions to specific models and experimental systems.

Let us begin with homogeneous reactions, involving only one point of
physical space. We will quickly move to reactions distributed along a one-
dimensional filament with molecular diffusion coupling adjacent volume
elements. Then we consider new features that emerge if the filament is made
into a ring, and finally fill in the ring to consider a two-dimensional disk of
reacting medium. Geometry comes into its own with a vengeance in three-
dimensional media, but this lovely subject goes beyond my ambitions for
this volume.

IL. Zero-Dimensional Situations

A. CoMPOSITION SPACE

The chemical composition of any homogeneous solution can be described
mathematically as a point in composition space. Composition space is the
N-dimensional positive orthant of ordinary Euclidean space, with its N
coordinate axes representing the positive concentrations of N chemical
species involved in the pertinent reactions. To each composition there corre-
sponds a net rate of synthesis, and degradation of each of the N substances.
(These rates are obtained from the pertinent kinetic equations, including
input and output conditions. In this discussion I regard all chemical systems
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as thermodynamically “ open,” at least in this sense: they consume energy-
rich species whose depletion need not concern us on the time scale of inter-
est.) Thus, a little arrow at each point in composition space points the
direction and rate of change of composition. Those arrows collectively
describe a flow (Fig. 1) that propels the composition of a reacting mixture
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Fig. 1. Three concentration axes figuratively depict N-dimensional composition space. The
origin represents concentration zero of each substance. The arrows sketchily evoke a flow in
composition space, determined by the rates of change of all concentrations due to reaction, as a
function of instantaneous composition. Several stagnation points of the flow (steady states of
reaction and degradation of all substances) are depicted.

from almost any initial condition ultimately to some attractor. We say
“almost ” because every reaction must have at least one and may have more
than one stagnant composition at which all the net rates of synthesis or
degradation are zero (e.g., see Schmitz, 1975); and none of these need be an
attractor (Wei, 1962). A stagnant composition may attract, in the sense that
the flow arrows lead toward it from all nearby compositions. Such a point is
stable against small perturbations of composition. Or it may repel, if there is
at least one line along which a small perturbation will grow, i.e., if nearby
arrows point outward in those directions. Mathematically, a point attracts if
the real parts of all N eigenvalues of the linearized rate equations are nega-
tive. Otherwise, it repels (excepting the improbable case of purely imaginary
eigenvalues).

Suppose the flow arrows not very far away on one side of an attracting
stagnation point lead the composition initially farther away before turning
around to funnel into the stagnation point (Fig. 2). Borrowing a term from

Fig. 2. As in Fig 1, but the flow depicts an “excitable” reaction: an increase of C; or a
decrease of C, from the attractor sets the system into a large excursion from the attractor.
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physiologists, who have for a long time dealt with such models of biological
excitability, such reactions are called “excitable.” Nerve cells, for example,
have an attracting steady state of ion balance across the cell membrane. It is
stable to small perturbations, but a not-so-small perturbation results in an
immediate and dramatic excursion further away from steady state before
things settle down again (see chapter by Troy, this volume). At least one real
chemical reaction in homogeneous solution has been found to exhibit excit-
able behavior, both in the laboratory and on paper (see Appendix, Rossler
etal., 1972, and chapter by Field, this volume). We will deal with the simplest
geometrical caricature of this reaction shortly.

A slight local change in the flow field near the stagnation point turns the
funnel trajectory into a closed loop (Fig. 3) (Franck, 1973, 1974). We then

Py

s

Fig. 3. Asin Figs. 1 and 2, but the flow depicts a reaction that approaches a limit cycle along
which its composition fluctuates regularly.

have a limit cycle: a cyclic change in composition that leads round and
round periodically. In idealized reaction systems involving only two chemi-
cal species or only two reaction rates, this is quite a common situation. For °
example, if there is but one stagnation point and it repels, and if concentra-
tions all decrease from arbitrarily high values as required in any reasonable
chemical model, then there is not much else trajectories can do but to run in
a ring circulating around the repelling stagnation point. Papers exhibiting
such attracting limit cycles in two-dimensional composition spaces have
become quite numerous (for reviews, see Higgins, 1967; Hess and Boiteux,
1971; Nicolis and Portnow, 1973; Goldbeter and Caplan, 1976).

Unfortunately, most chemically realizable reactions involve at least three
independent variables. Limit cycles in such systems are much more difficult
to exhibit analytically and have been exhibited in very few chemical models
(e-g, Glass and Perez, 1974; Goldbeter, 1975; Hastings and Murray, 1975;
Tyson and Kauffman, 1975; Cummings, 1976; Stanshine and Howard,
1976). A number of real systems are currently under intensive study for the
likelihood that they would exhibit true limit cycles in a chemostat with
suitable input of raw materials and overflow of product (see Faraday Symp.
Chem. Soc. 9, 1974).

Trajectories of more subtle geometry can arise once we abandon the early
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theorists’ blue laws against having more than two variables. For example, in
recent years an exciting literature has begun to blossom around the term
“strange attractor” (Lorenz, 1963; Moore and Spiegel, 1966; May, 1976;
May and Oster, 1976; Roessler, 1976a, 1976b, 1976c, 1977; Gilpin, 1977,
Williams, 1977; Guckenheimer ez al., 1977). A strange attractor is a region
oftwo or more dimensions in composition space that attracts trajectories and
from which no trajectories emerge. But, within a strange attractor the kinetics
almost defies description. It does not settle down to a stable periodicity, even
of a complex sort, nor to stationarity. Several theoretical examples under
current study (May, 1976; May and Oster, 1976; Rossler, 1976a, 1976b,
1976c, 1977; Guckenheimer et al., 1977; Williams, 1977) seem to be perfectly
feasible consequences of realistic kinetic equations: not at all mathematically
pathological delicacies. The * origami” constructions of Rossler (1976a,b,c,d)
make it all much more intuitively understandable, and even assist in
deliberate construction of chaotic reaction schemes. Olsen and Degn (1977)
give experimental evidence of a strange attractor in the reaction of H,0,
with peroxidase. Rossler and Wegmann (1977), and Schmitz, Graziani, and
Hudson (1977) show what appears to be chaotic dynamics in the Belousov-
Zhabotinsky reaction; Schmitz and Garrigan (1977) show the same in
Pt-catalyzed H oxidation.

B. SKETCHING THE FLow

One way to describe the complex kinetics of a reaction is to draw its
trajectories as a flow in composition space. Such artwork is no substitute for
understanding the mechanisms of molecular encounter and rearrangement.
But neither does the molecular cause and effect description by itself tell us
much about the dynamic behavior of a process involving many coupled
reactions. This is what the flow diagram or “ phase portrait ” provides in one
timeless glance. This geometric construction is a routine exercise for digital
computer and plotter if the kinetic equations are known. But if they are not,
as is more commonly the case in research, then the sketch must be made
from fragments of data and anecdotal phenomenology.

In preparing such a sketch, the main questions to answer are as follows.

(i) How many independent variables (concentrations or reaction rates)
are important in the sense that they all interact in the time scale of interest ?
This is the dimension N of composition space. (Quantities that change much
more slowly may be treated as parameters affecting the rate laws, rather than
as state variables.)

(ii) Does the reaction’s composition stay on some lower dimensional sur-
face embedded in the Euclidean N-space, except for negligibly brief tran-
sients? If so, what is the topology and shape of that surface? (See Feinn and
Ortoleva, 1977.)

(iii) How many stagnation points (steady states) are there in addition to



