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Preface | RS |

L ]

This text treats a subject that stems from Maxwell’s mathematical formulation of the basic laws
of electricity and magnetism, which led to the theoretical prediction of the reality of electro-
magnetic waves and which is of both theoretical elegance and growing practical utility. It is the
outgrowth of a series of lectures on electromagnetic theory and applications and microwave
engineering delivered over the last several years at the Indian Institute of Science, Bangalore.
Most topics included here have also been successfully used in intensive courses specially organized
for the professional engineers engaged in design, and research and development.

The volume is intended for the undergraduate in electronics, and electrical communication
and electrical engineering as a compreheasive, up-to-date text, covering the fundameantal principfes
of the various aspects of microwave engineering. It would be equally useful for the graduate in
physics specializing in electronics.

Throughout, the theoretical principles and the analytical results have been presented in a
form an average student can grasp and put into practical applications. The treatment is simple
yet rigorous enough, and includes many worked examples illustrating the various analytical
methods. No prior knowledge of mathematics, beyond that acquired by the engineering under-
graduate or the graduate in physics, is required, and the chapters have been arranged on this
basis. Owing to the limitations of space, the theoretical disgussion and the more detailed parts
of the applications have been curtailed to a certain extent in o.o‘me places, but nothing of funda-
mental importance to a microwave enginecer has been omitted. The reader wishing to supplement
his knowledge of the subject is advised to consult the References/Suggested Reading provided.

The explosive growth of microwave engineering in the last few years makes it almost
impossible to give a sufficiently thorough survey of all problems. An attempt has therefore been
made to stress the basic scientific principles and to present in one volume several topics so that
the reader can develop a good overall view of the subject. (A treatment of the advanced topics
is given in the author’s “Microwave Engineering: Special Topics” to be shortly published.) It is
hoped that the book would benefit all those for whom it is intended.

I wish to thank Professor S. Dhawan, former Director, Professor S. Ramakrishna, former
Chairman, Divisioa of Electrical Sciences, and Professor S. Nagaraja, former Chairman, Depart-
ment of Electrical Communication Engineering (all of the Indian Institute of Science) for their
constant help aud encouragement. I am indebted to the University Grants Commission for
sponsoring a projeet for writing this text. I should also like to express my gratitude to Mr. N.
Govindaraju and Mr. Varadaraja Iyengar for typing the manuscript, to Mr. R. Vijayendra for
drawing the diagrams, and to Miss A. V. Ashajayanti, (late) Miss R. Sudha, and Dr. (Miss)
Parveen Fatima Wghid for their assistance in preparin'g the manuscript. .

October 1985 R. Cﬁuﬂmss
Bangalore
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1 Introduction

A

\

1,1 Microwave Frequency Range N
The discovery of Maxwell that light, by its very nature, is electromagnetic, was the starting point
for the evolution of the concept of an electromagnetic spectrum that extends from d-c to y-rays,
The term microwave frequencies is very commonly used for those wavelengths measured from
30 cm-0.3 mm which correspond to the frequency range 10°-102 Hz. Since a large number of
electronic communication systems utilize the space propagation path, and since a certain band-
width is required for each transmission, the frequency spectrum of interest to communication
engineers has become an international resource. According to the International Radio Consul-
tative Committee (CCIR), the frequency ranges are as designated in Table 1.1. For convenjence,
the frequencies are also often designated in terms of bands (see Table 1.2).

.12 Historical Resumé of Early Work on Microwaves

Hertz (1893) conducted a series of experiments at A = 66 cm, with a transmitter gonsiiting of a
parabolic mirror antenna which was fed by a dipole excited by spark discharges produced by an

Table 1.1 Designation of Frequency Ranges

Frequency (f) Wavelength (A) Designation
<30 kHz >10 km VLF
30-300 kHz 10-1 km LF
-0.3-3 MHz 1-0.1 km . MF
3-30 MHz 100-10 m HF
30-300 MHz 10-1 m VHF
300-3000 MHz 1-0.1m UHF
3-30 GHz : 100-10 mm SHF
3(.}4300 GHz 10-1 mm ’ . EHF

* ®

induction coil, and with-a receiver comprising a similar antenna with a dipole whose output ¥
passed on to a spark-gap detector placed behind the mirror. These carly experiments established
beyond doubt actionat a distance and proved that this action was communicated to a distance
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.

Table 1.2 Bands for Frequency Ranges

Band designation Frequency range (MHz)
p 225-390
L 390-1550
s 1550-5200
X 5200-10,900"
K 10,900-36,000
o 36,000-46,000
vV 45,000-56,000

by wave motion. This justified Maxwell’s theoretical ’prediction that the waves responsible for
optical phenomena are electromagnetic. Hertz's work on reflection,-diffraction, polarization, and
measurement of wavelength by interference technique may be said to have led to the discovery of
radio frequency optics, where the phenomenology of optics can be represented by microwaves.
Righi (1897) perfo?tned many quasi-optical experiments at X- and S-bands and thus firmly laid
the foundation of microwave optics. Lodge and Howard (1889) constructed a cylindrical lens of
pitch. Lodge (1897, and 1898 and 1899) was also successful in establishing the mode property
of propagation in a hollow tube and transmission of signals through space without wires. Bose
(1895, 1897, and 1898a-1898¢c) conducted several microwave experiments at 5 mm with apparatus
of his own design such as microwave spectrometers, diffraction gratings, polarimeters, spark
generators, and coherer detectors. For a description of these experiments, sce Ramsay (1958).
Thus, it is evident that the pioneering work before 1900 by Hertz, Lodge, and Bose laid the
foundations of modern microwave engineering.

1.3 Correspondence between Field and Circait Concepts

Since the wavelengths at microwave frequenciés are of the same order of magnitude as the
dimensions of circuit devices, and the time of propagation of electrical effects from one part of
the circuit to the other is comparable to the period of oscillating currents and charges, conven-
_tional circuit concepts of currents and voltages need to be replaced by field concepts. At micro-
wave frequencies, the difficulty in applying circuit concepts is obvious when the potential difference
between two points ordinarily means the line integral of the electric field strength, namely,

IE-ds,

ghaken at one instant of time, along some paths joining the two points. This concept is uniqul
“and useful only if the value of this line integral is independent of the path. But if the path length
is not small compared to the w. velength, the line integral is not, in general, independent of the
path, and hence the significance of the term voltage is lost. This suggests that, at microwave
frequencies, we have to deal with electric and magnetic fields instead of with voltage and current.

-~

Py

]
-

(//___(",-/Ql
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- ~Maxwell’s field equations are generalizations of Faraday’s taws of induction, Amperes
Circuit law, and Gauss’ law. These equations established that magnetic flux source does not exist.
#Hence, a.close correspondence between circuit concepts and field concepts can be established:
Tor example, the field equation V< E== —3B/dt corresponds to the circuit equation Zv, = —a/as,

«¢ being the magnetic flux; the power flow given by the equation P= E x H corresponds to the
circuit concept of power, namely, P = VI.
Maxwell’s field equations, their solutions, and their applications to several practical and
useful problems form the subject matter of this text. The field and circuit concepts are used to
study the characteristics of transmission lines, waveguides, and passive microwave components.

1.4 Some Useful Applications of Microwaves

Since the transit-time effects of electrons were the major limitations of the conventional high-
frequency tubes, these conventional tubes could not succeed in the microwave region. These
handicaps were overcome by introducing the concept of interaction of electron beams with electro-
maguetic fields, resulting in the development of magnetrons, klystrons, and travelling-wave tubes,
which-made the evolution of radar possible. These developments during World War II opened
up new vistas for the extensive application of microwaves, not only to the technological fields
such as defence, but to areas of civilian interest, e.g., microwave communication relay links,
satellite communication, and domestic appliances, for instance, microwave ovens. Microwaves
also find extensive application in pure scientific fields such as radio astronomy, spectroscopy, and
materials research which led to the development of solid-state microwave generators, e.g., Masers,
coherent light generators such as lasers, and ferrite microwave devices.

The principles of microwave tubes and their modern solid-state counterparts are discussed in
Chapter 10 in a language that can be understood not only by undergraduates in electronics and
electrical communication engineering, but also by post-graduate students in physics.

. Microwaves are currently used in India in the following areas: defence, post and telegraph,
railways, civil aviation, space communication, police, and radio astronomy. It .may therefore be
stated that a comprehensive course in microwave engineering for the undergraduate and post-
graduate level students should include the following topics:

(i) Maxwell’s field equations and their solutions
(i) Transmission lines and waveguides
(iii) Microwave networks
(iv) Microwave generators, including solid-state devices
(v) Microwave antennas
(vi) Microwave measurements
(vii) Other related topics.

All these topics are discussed in this text. The treatment of some of the topics may be found to be
- somewhat condensed due to limitations of space. However, we have endeavoured to emphasize
the fundamental principles rather than details, with the conviction that, if the fundamental
principles are properly grasped, the details can be learned by consulting the proper references.s -

_ REFERENCES
- Bose, J. C., On a new electropolariscope, The Electrician, 36, 291, 1895.
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2 Mathematical Review

2.1 Vector Analysis

Vector is a name given to physical quantities such as force, velocity, and field intensity which can
be defined uniquely only when their magnitudes and directions are specified. A vector is re-

— .
presented graphically by a directed segment PQ or 4 (see Fig. 2.1) whose length is proportional to

.Fig. 2.1 Equal vectors.

-
the magnitude of the vector and whose direction is the same as that of PQ. Two parallel vectors

P—é (A4) and PT>Q’ (B) are considered equal if they have the same magnitude and direction.

A scalar is a quantity which can be specified only by its magnitude and does not have a
direction. Examples of scalar are temperature, speed, and mass.

The common laws of addition, subtraction, multiplication, and division which are applicable
to scalars are not applicable to vectors. Throughout this text, therefore, we shall denote a vector
by F and a scalar by F and the magnitude of F by |F] or F.

Addition and Subtraction of Vectors Q o

The sum of the vectors 4 and B is given by the diagonal
of the parallelogram constructed with these vectors as

. . yd -
the adjacent sides (see Fig. 2.2). Since PQ + QP =0,

0P = —FQ.

N

v
P A R

- = — — - -
Hence, 4 — B= PQ — PR = PQ + RP = PQ + PR’
- PS — R—é, as shown in Fig, 2.3. . Fig. 2.2 Addition of two vectors.
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Fig. 2.3 Subtraction of two vectors.

Scaler and Vector Products

¢ - The scalar product of the vectors 4 and B is defined as the product of their magnltudes 4 and B
+"*  and the cosine of the angle § between them. Thus

A*B = ABcos . . ) 2.1y

If the scalar product of two vectors is zero, then they are perpendicular to each other.
Scalar multiplication obeys the commutative and distributive faws

A-B=B+A, (4+B)-C=A4-C+B-C. @)

The component of a given vector 4 in a partlcular direction defined by a unit vector ® in that ~
direction is the scalar product of 4 and u, that is, 4 +a; or, in other words, the component is the .
projection of the ‘vector 4 on m». The cartesian components of a vector 4, drawn from a point %
P(x1, Y1, 21) to a poinit Q(x3, ¥1, 22), along the positive directions of the x-, y-, and z-axis are given :

by x3 — %, ¥ — y1, and z; — z,. If I is the length of the vector and a, B, y are the angles the

vector makes with the coordinate axes, then

PO, = A, = x3 — x; =l cos a, , . ' S S 2.3)

PO, =Ayj=y—y =lcosp, B | @9)

PO, =4, =2~z =lcosy, . o (2.5)

Mt = (42 + A2+ ARy, | Y 1) 2
The scalar product 4 « B of .the two vectors A ahd B can be expressed as

A+B = A.B, + A,B, + A,B,, @7

and the cosine of the angle J between the two vectors is given by
€OS Y = COS a4 COS ag + cOS By cos Bp -+ COS y,4 COS g, : . (2A8)

where (x4, B4, v4) and (ap, Bs, 73) are respectnvely the angles 4 and B make with the three co-

. ordinate axes x, y, and z.

" The vector product A x B of the vectors 4 and B is defined as a vector perpendicular to both
A nnd B, pomtmg in the direction towards which a right-handed screw would advpce 1!' ' turned
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from A to B through the smaller angle (see Fig. 2.4). The magnitude of the vector product is the

AxB

v

Fig. 2.4 Vector product.

product of the magnitudes of 4 and B and of the sine of the angle between them, that is, the area
of the parallelogram constructed with 4 and B as the adjacent sides.
For vector products, we have

AXB= —BxA, (2.9)
A+ B)xC=4%xC+ BxC. (2.10)

The components of the vector product 4 X B in the cartesian coordinates x, ¥, z are expressed as

(AX B); ~ 4,B. — A4,B,, 2.11)
(AX B), = A,B, — A.B,, (2.12)
(AXB), = AB, — A,B,. (2.13)
If 4 and B are expressed as
A = A, + uyd; 4 u,4,, 2.14)
B =wu.B. + u,B, + u.B,, (2.15)
then
u. u, u, -
AXB =4, A, A4, : (2.16)
B, B, B.

Functions of Position

A function of position or point function is a function Sf(x, », z) depending only on the position of
points. The loci of equal values of a point function are called level surfaces or contour surfaces.
Some level surfaces have special names, e.g., equipotential, isothermal, and isobar surfaces.
Figure 2.5 illustrates how two-dimensional point functions may be represented graphicatly by
drawing contour lines. «

In Fig. 2.5a, the solid curves are the contour lines x2 + y* = constant r2, and the dashed
lines are the contour curves 3/x = tan—! § constant. In Fig. 2.5b, the solid curves are the contour
lines log (pi/py) = u, where p, and p; are the distances from two fixed points 4 and B, and the
dashed curves are the contour curves for § — constant, ¢ being the angle made by BP with PA.



