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PREFACE

THE development of new processes in the chemical industry is becoming
more complex and increasingly expensive. If the research and development
of the process can be carried out with confidence, the ultimate design will be
more exact, and therefore the plant will operate more economically. In all
facets of such a project, mathematics, which is the language of the quantita-
tive, plays a vital role. Therefore training in mathematical methods is of the
utmost importance to chemical engineers. The present text has been written
with these ideas in mind, and we would emphasize that our aim is to present
mathematics in a form suitable for the engineer rather than to teach engin-
eering to mathematicians. To the pure mathematician an elegant proof is an
end in itself, but to the chemical engineer it is merely a means to an end.
Consequently this book only sketches demonstrations of the validity of
theorems, to encourage the reader to have more confidence in the use of the
technique for the solution of engineering problems. In addition, an attempt
has been made to sort out the useful from the trivial and flamboyant of the
wide variety of mathematical techniques available.

The material presented in this book is based on various undergraduate
and post graduate courses given in the Chemical Engineering Department of
the University of Birmingham. Many of the worked examples have been
selected from research work carried out in the department, and these are
supplemented with problems taken from the chemical engineering literature.
Some chapters of the book (notably Chapters 4 and 5) are almost entirely
mathematical, but wherever possible the text has been illustrated with chemi-
cal engineering applications.

The book was written when both authors were lecturers in the Chemical
Engineering Department of the University of Birmingham. It is hoped that
the text will encourage chemical engineers to make greater use of mathe-
matics in the solution of their problems.

We wish to express our thanks to Professor J. T. Davies for initiating
the venture, and to Professor F. H. Garner, and Professor S. R. M. Ellis for
their interest and advice in the preparation of the text.

Birmingham
July, 1963 V.G.J. and G.V.J.
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Chapter |
THE MATHEMATICAL STATEMENT OF THE PROBLEM

1.1. INTRODUCTION

NEArLY all applied science consists of performing experiments and
interpreting the results. This may be done quantitatively by taking accurate
measurements of the system variables which are subsequently analysed and
correlated, or qualitatively by investigating the general behaviour of the
system in terms of one variable influencing another. The first method is
always desirable, and if a quantitative investigation is to be attempted it is
better to introduce the mathematical principles at the earliest possiblie stage,
since they may influence the course of the investigation. This is done by
looking for an idealized mathematical model of the system.

The second step is the collection of all relevant physical information in
the form of conservation laws and rate equations. The conservation laws of
chemical engineering are material balances, heat balances, and other energy
balances; whilst the rate equations express the relationship between flow
rate and driving force in the fields of fluid flow, heat transfer, and diffusion
of matter. These are then applied to the model, and the result should be a
mathematical equation which describes the system.

The type of equation (algebraic, differential, finite difference, etc.) will
depend upon both the system under investigation, and the detaj] of its model.
For a particular system, if the model is simple the equation may be elemen-
tary, whereas if the model is more refined the equation will be a more difficult
type. The appropriate mathematical techniques are then applied to this
equation and a result is obtained. This mathematical result must then be
interpreted through the original model in order to give it a physical signi-
ficance.

In this chapter, only the simplest problems will be considered and the
ideas of simple models will be introduced. The more complicated models
will be introduced throughout the book in the chapters dealing with the
particular mathematical techniques which are needed for the completion of

the solutions.

1.2. REPRESENTATION OF THE PROBLEM

A simple example of the application of these ideas will be given first.
The apparatus shown diagrammatically in Fig. 1.1 is to be used for the con-
tinuous extraction of benzoic acid from toluene, using water as the extracting
solvent. The two streams are fed into a tank A where they are stirred

vigorously, and the mixture is then pumped into tank B where it is allowed

M.M.C.E. 1 1



2 MATHEMATICAL METHODS IN CHEMICAL ENGINEERING

to settle into two layers. The upper toluene layer and the lower water layer
are refnovgd separately, and the problem is to find what proportion of the
benzoic acid has passed into the solvent phase.

B
erlzene Water
benzoic acid
Benzene
ro. Water
benzoic acid +
benzoic acid

Fic. 1.1. Single-stage mixer settler

The problem is idealized in Fig. 1.2 where the two tanks have been com-
bined into a single stage. The various streams have been labelled and two
material balances have already been used, (a) conservation of toluene, and
(b) conservation of water. These flow rates have been expressed on a solute

3 .
R (t/ min tpluene_,__d . R t’t:'/min toluene
¢ Ib/ft3 benzoic acid x Ib/fEbenzoic acid
S ft3/min water
y Ib/ft> benzoic acid

Fic. 1.2. Idealized single-stage solvent extraction

S ft/min water

free basis to simplify the analysis. The concentration of benzoic acid in
each stream has also been stated and this completes the mathematical model.

So far, it has been assumed that all flow rates are steady, and that toluene
and water are immiscible. Further assumptions are now made that the feed
concentration ¢ remains constant, and that the mixer is so efficient that the
two streams leaving the stage are always in equilibrium with one another.
This last fact can be expressed mathematically by

y=mx (1.1)

where m is the distribution coefficient. )
The equation is now derived from the model by writing down a mass

balance for benzoic acid.

Input of benzoic acid = Re 1b/min
Output of benzoic acid = Rx+Sy 1b/min

Since benzoic acid must leave at the same rate as it enters,
Rc = Rx+S8y (1.2)

The pair of equations (1.1) and (1.2) contain four known quantities
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(R, S, ¢, m) and two unknown quantities (x, y), and they can be solved for
the unknowns as follows.

Rc = Rx+mSx
_ Re __ mRe
*“Rims YT R+ms (1-3)
Therefore, the proportion of benzoic acid extracted is
Sy mS
Rc R+mS 14

As a numerical example, if S = 12R, m = 1/8, and ¢ = 0:1; then
x = 0-04, y = 0-005, and the proportion of acid extracted is 60 J;.

At this stage, it can be seen that even in this simple problem, two dimen-
sionless groups which are characteristic of the problem, have arisen quite
naturally as a result of the investigation. Putting

o= R/mS (1.5
and E = Sy/Rc, equation (1.4) becomes
E=1/(x+1) ’ (1.6)

That is, the proportion extracted is governed solely by the value of the
dimensionless group a.

1.3. SOLVENT EXTRACTION IN TwoO -STAGES

The above example will now be reconsidered, but two stages will be used
for the extraction of benzoic acid instead of one stage. Each stage still con-
sists of two tanks, a mixer and a settler, with counter-current flow through
the stages. The idealized flow system is shown in Fig. 1.3 where the symbols

R R ; R

< Stage X4 Stage | %2
S 1 S 2 S
) % °

Fic. 1.3. Idealized two-stage extraction

have the same meaning as in the previous example, and the different con-
centrations in a particular phase are distinguished by suffixes. In accordance
with chemical engineering practice, the suffix denotes the number of the stage
from which the stream is leaving. The assumptions which were made above
are made again, and equation (1.1) is still valid for each stage separately,
giving

Y1 =mx, Y2 =mx; .7
A benzoic acid mass balance is now taken for each stage.
Stage 1 Stage 2
Input of acid (Ib/min) Rc+ Sy, Rx,
Output of acid (Ib/min) Rx, +Sy; Rx,+ Sy,
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T.he fact that benzoic acid must enter and leave a stage at the same rate
gives the two equations ,

Rc+Sy, = Rx;+Sy,

Rx; = Rx,+Sy,
Using equations (1.7) to eliminate x, and y,, the inter-stage concentrations,
Rc+mSx, = (Ry;/m)+ Sy, 1.8)
and Ry;/m = Rx,+mSx, (1.9)

Eliminating y, between equations (1.8) and (1.9),

R(Rc+mSx,) = (R+mS)(Rx, +mSx,)
R*c = x,(R*+ mRS +m?S?)

Xy = Rle (1.10
27 R4+ mRS+m?S? 10)
__ mRc(R+mS)
Y= RT Y mRS+m?S? (11
Again, the proportion of benzoic acid extracted is
S mS(R
yi__mSR+mS) (1.12)

‘R R>+mRS+m?S?

Introducing the dimensionless groups E and a again from equation (1.5),

equation (1.12) becomes .

e+l -1

Tl tat+l ad-1

Using the same numerical example as before, i.e. S = 12R, m = 1/8, and

¢ = 0-1; then x, = 0-021, y, = 0-0066, and the proportion extracted is 79 %.

A greater degree of extraction has thus been obtained with two stages
than with one stage, everything else being the same.

(1.13)

- 1.4. SOLVENT EXTRACTION IN N STAGES

This improved extraction leads to the consideration of more than two
stages in the extraction system. The algebraic treatment was quite simple for
one stage, only requiring the solution of two equations in two unknowns.
The application to two stages involved the solution of four equations in four
unknowns, and following the same procedure for N stages, it would be
necessary to solve 2N equations in 2N unknowns. This is too laborious and
would require an individual solution for every integer value of N, and more
advanced mathematical techniques are obviously needed to reduce the work.
One method using matrix algebra will be illustrated in Chapter 12, but a
second method, using finite differences and anticipating the contents of
Chapter 9 will be used here.



1. THE MATHEMATICAL STATEMENT OF THE PROBLEM 5

The general arrangement is as shown in Fig. 1.4 where the flow rates of
the }wo streams are still denoted by R and S, and the benzoic acid concen-
trations by x and y. The suffix notation is again used to distinguish between

Fic. 1.4. Idealized N-stage extraction

the different states of each stream, the suffix denoting the stage which the
stream has just left. This time, a benzoic acid material balance is applied to
the general stage n of the system.

Input of acid (Ib/min) = Rx,_;1+SVn+1

Output of acid (Ib/min) = Rx,+ Sy,

Since entry rate and exit rate must be equal,

Rx,_1+SVus1=Rx,+Syn (1.19)
The distribution coefficient equation (1.1) is still valid for any value of n.
y'l = mx)l

and equation (1.14) becomes
Rx,_;+mSx, ., = (R+mS)x,
Introducing « again from equation (1.5),
Xpo1F Xppy = @+ 1%,
or in standard form, ’
Xpp1—(@+ DX, +X,-, =0 (1.15)

This is a second order linear finite difference equation and the method
of solution will be discussed in Chapter 9. The solution is quoted ‘here for
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completeness, viz.
Vo = mx, = me(@” 1 —a")/(@¥* 1 -1) (1.16)

and this may be verified by substitution into equation (1.15). The proportion
extracted, E, is given by
Sy, a¥-—-1

E=Re “# o1 .17

which gives equation (1.13) for the special case N = 2.

TABLE 1.1. Proportion Extracted in N Stages
(S =12R, m=1/8)

N 1 2 3 5 10

E(%) 60-0 786 87-7 95-2 99-4

Table 1.1 gives a few values of E for different values of N for the par-
ticular system considered. This shows how the proportion extracted increases
with the number of stages, and indicates that more than ten stages are likely
to be wasteful whereas one stage gives a poor degree of extraction. This type
of problem will be continued in Chapter 13, where the most economical
number of stages will be determined by financial considerations.

1.5. SIMPLE WATER STILL WITH PREHEATED FEED

Figure 1.5 illustrates a distillation apparatus consisting of a boiler B with
a constant level device C, fed with the condenser cooling water. The steam is
condensed in A and collected in the receiver D. Some of the latent heat of

A
.
F e F
T To
qIT
y I
T
C B

FiG. 1.5. Water still with heat exchanger

evaporation is returned to the boiler by preheating the feed. Deno!;ing the
condenser feed rate by Flb/h and the temperature by T,° F, the exit water
temperature by T °F, the excess water over-flow rate by Wlb/h and the
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distillation rate by Glb/h, the performance of the apparatus can be
investigated.
Input of water to the still (Ib/h) F
Output of water from the still (Ib/h) = W
Output of steam from the still (Ib/h) = G
. F=W+G (1.18)
If heat is supplied to the boiler at a rate H Btu/h, the latent heat of
evaporation of water is L Btu/Ib, and O°F is taken as the datum temperature,
a heat balance can be taken over the boiler.
Heat input (Btu/h) = H+(F—W)T
Heat output (Btu/h) = 212G+LG
.. H+GT =(Q12+L)G (1.19)
where equation (1.18) has been used to eliminate W. Equation (1.19) con-
tains two unknown quantities, G and T, and another equation is needed to
complete the description. This is obtained from a heat balance over the
condenser.
Heat gained by cooling water (Btu/h) = F(T—T,)
Heat lost by condensing steam (Btu/h) = G(L+212—T)
: F(T-T,) =G(L+212-T) (1.20)
In deriving equation (1.20) it has been assumed that the distillate is cooled to
the exit water temperature.
Eliminating G between (1.19) and (1.20),
FT-T,)=H
T = Ty+H|F (1.21)

From (1.19) and (1.21),
H = G212+ L—-T,—H/F)

_ FH

T FQ12+L-Ty)—H
This equation gives the rate of distillation in terms ‘of the heat input, and the
temperature and flow rate of the cooling water.

If an attempt is made to interpret equation (1.22) for a constant heat
supply rate and constant feed temperature, it is seen that as F is decreased,
G increases. In fact when F = H/(212+L—T,) it appears that G is infinite,
which is a physical impossibility. Reference to equation (1.21) resolves the
difficulty as follows. As F decreases, T increases; but 7 cannot exceed 212° F
as it leaves the condenser, and this gives the restriction

To+H/F=T<212
F > H|Q212—-T,) (1.23)

If F does not satisfy this inequality, T' will remain constant at 212 and

equation (1.19) becomes

G (1.22)

H=LG
G=HJL
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The temperature restriction has a further influence in that the amount of
steam .produced by the boiler exceeds the capacity of the condenser.
Denoting the rate of collection of distillate by D, equation (1.20) becomes

F(212—T,) = DL

D = (212—T,)F/L (1.24)

The complete solution is thus given by equations (1.22), (1.23), and (1.24); i.e.
D = (212—Ty)F/L for F < H/(212—T,)

_ FH
T FQQ12+L-T,)—H
and this solution is illustrated by the continuous line in Fig. 1.6. This shows
that when F = H/(212—Ty,), the rate of collection of distillate is a maximum
at a value H/L.

The above analysis has been made without reference to heat losses, and
an attempt to allow for these would lead to a much more complicated model.
A qualitative investigation would suggest that heat losses in the feed line to
the boiler would be detrimental, and more serious at low values of F; but
heat losses in the vapour line can have two effects. If F is greater than the
optimum value, losses from the vapour line will be detrimental, but if F is
smaller than the optimum value, heat losses from the vapour line will actually
increase the yield. On the basis of these considerations, the second, dotted
line has been drawn in Fig. 1.6.

and D for F > H/(212—T,)

1
1
i
I
D N
v/ 1
/1
T s/
D= H e fm b e e~ TWwrs
= e, / i
/ i
1/ i
/ i
/ i
7 |
{
__H
F=m, —F

FiG. 1.6. Variation of distillation rate with feed rate

1.6. UNSTEADY STATE OPERATION

In the examples considered so far, the system has been in a steady state,
allowing the material entering the system to be equated to the material leaving
the system and this has always given algebraic equations. In unsteady state
problems, however, time enters as a variable and some properties of the
system become functions of time. In the application of conservation laws it
is no longer true that the rate of entry of material will equal the rate of exit,
since an allowance must be made for material accumulating within the



