SN
EEEEENE

COMPUTER
ORGANIZATION
AND
PROGRAMMING

WITH AN EMPHASIS
ON THE PERSONAL COMPUTER

FOURTH EDITION

C. William Gear

Department of Computer Science
University of lllinois at Urbana-Champaign

McGRAW-HILL BOOK COMPANY

New York St.Louis San Francisco Auckland Bogota
Hamburg Johannesburg London Madrid Mexico Montreal New Delhi
Panama Paris Sao Paulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman by Beacon Graphics Corporation.
The editors were Eric M. Munson. Kaye Pace, and Sheila H. Gillams:
the production supervisor was Diane Renda.

New drawings were done by Danmark & Michaels. Inc.

Halliday Lithograph Corporation was printer and binder.

COMPUTER ORGANIZATION AND PROGRAMMING
With an Emphasis on the Personal Computer

Copyright © 1985, 1980, 1974, 1969 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in
a data base or retrieval system, without the prior written permission of the publisher.

1234567890HALHAL 898765

ISBN 0-07-023049-8

Library of Congress Cataloging in Publication Data

Gear, C. William (Charles William), date
Computer organization and programming.

(McGraw-Hill series in computer organization and
architecture)

1. Electronic digital computers — Programming.
2. Computer architecture. 3. Microcomputers — Programming.
L. Title. 1I. Series.
QA76.6G38 1985 001.64'2 84-20180
iSBN 0-07-023049-8

PREFACE

This book is intended for a course in programming at the machine level and is aimed
at students who have taken one or two earlier courses in a procedure-oriented language.
The material covered is essentially that in Association for Computing Machinery
Curriculum *78 courses SC3 and CS4, although it does not cover as much logical design
as CS4. The intent of the book is to let the student see the principles behind various
machine-language features and understand the alternatives available to the computer
designer. I do not view this as a course for training assembly-language programmers;
indeed, few such programmers are needed any more. However. there are many reasons
for knowing something about the machine at this level: a high-level language pro-
grammer can produce better code when there is an understanding of the processes
occurring at the machine level; occasionally, some inner part of a high-level language
program must be written at the machine level, either to gain efficiency or to gain access
to devices at the bit level; computer designers need to understand machine-level pro-
gramming and how it is used in the implementation of high-level language constructs;
and future microprogrammers certainly need to understand the concepts of machine-
level programming!

The objective of this book continues to be presentation of the basic concepts of
machine-level architecture and programming, so that all ideas arc discussed in a
non-machine-specific setting. The objective [state to students taking this course is that
at the end they should be able to pick up the assembler and principles-of-operation
manuals for a computer and be able to find out how to program it in assembly language.
The machine- or system-specific information in this book is not intended to be a
complete reference for the computer or its system. but to introduce the student to the
computer’s use. The student should have copies of the reference manuals for the
particular hardware and operating system in use. Unfortunately. those manuals are
mostly unreadable, so one purpose of this text is to show the student the underlying
principles to make it possible for her or him to use the reference manuals.

I place heavy emphasis not on learning details of a particular machine but on
understanding concepts. However, I have found that it is necessary to teach students a

xi

Xii PREFACE

particular assembly language at first and neither leave them in the air with vague
generalities nor confuse them with the details of more than one computer. Therefore,
I introduce each new topic (such as index registers) by first discussing the general
principles and giving some motivation for their use. Then [illustrate with the particular
computer being used for homework assignments. I do not discuss other computers until
late in the course when the basic ideas are fairly well understood and confusion is less
of a problem.

This fourth edition has been rewritten to reflect the fact that the majority of in-
structional use is now interactive, and reorganized considerably to present the material
in a more top-down manner. The introduction now includes a brief overview of typical
operating systems, some specifics on actual operating systems, and a quick look at
editors. Most students will have had some experience with the use of systems in an
earlier class, but if not, this material is intended to make it possible for them to start
using a computer as soon as possible. Chapter 2 starts with a quick look at machine-
level programming of the simplest type and then presents an initial look at assembly
so that the student can start to try out simple programs. It also looks at debugging
systems, since these can be used to watch the execution of simple machine-language
code interactively. I strongly recommend that this method be used in the early stages
of instruction, as it bypasses all problems of input and output. In fact, with some
absolute debuggers it even allows avoidance of the assembler, as the debuggers permit
direct assembly of code with absolute addresses, and this is sufficient for the initial
experiments with machine code.

In this version of the fourth edition, specific examples are taken from the INTEL
8080 and 8086/88 hardware with the CP/M and IBM PC DOS operating systems,
respectively. There are enough similarities between the two architectures and systems
that the student can see the ideas in a real setting without the confusion of too many
different implementations. At the same time, the two architectures and systems include
many of the ideas of modern computer and system design.

I supplement the book with additional material on the computer being used. I have
found that some locally prepared short summaries of the key information, coupled with
manufacturers’ documentation, offer a good compromise. as one of the skills to be
learned is the use of typical computer reference documentation.

It is important to assign a number of programs as homework during the course. |
have found it helpful to provide the students with a simple, working assembly-language
program and to ask them to make minor changes to it as their first assignment. This
allows them to gain some experience while the beginning ideas are covered in class.
By the time some of Chapter 2 has been covered. a second assignment that requires
more independent work can be made. Material in Chapters 3 and 4 can be covered at
almost any time, and many instructors prefer to get into procedures in Chapter 5 as soon
as possible. The amount of material covered in Chapter 3 should be determined by the
interests and backgrounds of the students — it is not essential to cover more than the
initial overview of twos complement. Chapter 4 can be left as a reading assignment; it
is included for the sake of completeness. Chapters 6. 7. and 8 are the last that I view
as essential to cover in a course of this type. Chapters 9 through 12 are optional; each
can be omitted without affecting later discussions. Chapter 9 can be used for

PREFACE Xiii

engineering-oriented classes. Chapter 10 can be given as a reading assignment. Chap-
ter 11 can be used to give a better insight into the assembler or to illustrate a large
programming problem. Chapter 12 can be used as a source for programming problems
as well as for some low-level data structure discussions.

There are a variety of questions at the end of the chapters. including some pro-
gramming problems. Many of these can be modified to provide additional questions or
homework.

C. William Gear

CONTENTS

PREFACE

Introduction

1.1 THE BASIC CAPABILITIES OF COMPUTERS
1.1.1 The Hand-Operated Calculator
1.1.2 The Stored-Program Computer
1.1.3 Operating Systems and Translators
1.1.4 Timesharing and Remote Terminals
1.1.5 Microcomputers
1.2 COMPUTER ORGANIZATION
1.3 LANGUAGES FOR USING COMPUTERS AT DIFFERENT
LEVELS
1.3.1 Program Development and Styte
1.4 PROCESSING THE PROGRAM
1.5 OPERATING SYSTEM SOFTWARE: AN INTRODUCTION
1.5.1 An introduction to the CP/M Operating System
1.56.2 An Introduction to DOS for the IBM PC
1.6 AN INTRODUCTION TO EDITORS
1.6.1 The CP/M Editor '
1.6.2 The DOS Editor for the IBM PC
1.7 SUMMARY

Machine-Level Programming: Primary Memory and the CPU

2.1 INTEGERS AND CHARACTER CODES
2.1.1 Hexadecimal and Octal

2.2 MEMORY
2.2.1 Symbolic Addressing
2.2.2 Multibyte Data Addressing

Xi

—_

DO NOOSE N

11

17
19
23
27
30
33
35
38

40

40
43
44
45
46

vi

2

CONTENTS

.3 THE CENTRAL PROCESSOR AND ITS OPERATIONS
2.3.1 Three-Address Instructions
2.3.2 Two-Address Instructions
2.3.3 One-Address Instructions
2.3.4 Stack (Zero-Address) Instructions
2.3.5 CPU Registers
2.3.6 INTEL 8080 Data Registers and instructions
2.3.7 INTEL 8086/88 Instructions and Registers

2.4 INSTRUCTION REPRESENTATION AND SEQUENCING

2.4.1 INTEL 8080 Control
2.4.2 INTEL 8086/88 Control

25 ASSEMBLY LANGUAGE

2.5.1 Assembler Representation of Instructions

2.5.2 Definition of Data and Storage by Pseudo Instructions
2.5.3 Assembler Directives

2.5.4 The CP/M Assembiler

2.5.5 The IBM PC Assembler

2.6 DEBUGGERS

2.6.1 DDT for the INTEL 8080
2.6.2 DEBUG for the IBM PC

2.7 ADDRESS STRUCTURE

2.7.1 Index Registers

2.7.2 Base and Segment Registers

2.7.3 Indirect Addressing and immediate Operands
2.7.4 INTEL 8080 Address Structure

2.7.5 INTEL 8086/88 Address Structure

2.8 LOGICAL OPERATIONS

29

2.8.1 Logical Operations in the INTEL 8080
2.8.2 Logical Operations in the INTEL 8086/88
IMPLEMENTATION OF PROGRAM STRUCTURES
2.9.1 Codinginthe INTEL 8080

2.9.2 Codinginthe INTEL 8086/88

2.10 CHAPTER SUMMARY AND PROBLEMS

Representation of Information

3.1

3.2

33
3.4
3.5

INTEGER AND FIXED-POINT NUMBERS

3.1.1 Rounding and Range

3.1.2 Shifting Binary Numbers

REPRESENTATION OF SIGNED INFORMATION

3.2.1 Twos Complement Representation of Numbers
3.2.2 Ones Complement Representation of Numbers
CONVERSION OF NUMBERS

FLOATING-POINT REPRESENTATION

PARITY

48
49
50
52
54
55
57
59
60
63
65
67
67
71
72
74
76
78
80
82
85
85
89
90
92
95
100
101
101
102
104
105
106

111

112
112
113
114
114
120
121
124
127

3.6 ARITHMETIC IN COMPUTERS
3.6.1 Arithmetic in the INTEL 8080
3.6.2 Arithmetic in the INTEL 8086/88
3.7 SUMMARY AND PROBLEMS

Input, Output, and Secondary Storage Devices

4.1 INPUT-OUTPUT DEVICES

4.1.1 Online Terminals

4.1.2 Line and Page Printers

4.1.3 Plotters and Display Devices

4.1.4 Networks

4.1.5 Punched Cards

4.1.6 Punched Paper Tape

4.1.7 Document Readers and Other 1/0 Devices
4.2 LONG-TERM STORAGE

4.2.1 Magnetic Tape

4.2.2 Disk File Units

4.2.3 Variations of Tapes and Disks
4.3 MEDIUM-TERM STORAGE DEVICES

4.3.1 The Nonremovable Disk

4.3.2 The Drum

4.3.3 Bulk Storage Devices
4.4 SPEED AND CAPACITY COMPARISONS
4.5 SUMMARY AND PROBLEMS

Subprograms
5.1 PARAMETERS AND DATA TRANSFER

5.1.1 Subprograms and Parameters in the INTEL 8080
5.1.2 Subprograms and Parameters in the INTEL 8086,/88

5.2 PARAMETER-LINKING MECHANISMS
5.3 SUBPROGRAM CONVENTIONS

5.3.1 Stack Frames

5.3.2 INTEL 8080 and 8086,/88 Subprograms
5.4 RECURSION
5.5 REENTRANT PROGRAMS: PURE PROCEDURES
5.6 USE OF SUBPROGRAMS FOR STRUCTURE
5.7 CHAPTER SUMMARY AND PROBLEMS

The Operating System and System Programs

6.1 THE SYSTEM COMMAND LEVEL
6.1.1 The Command Level in CP/M
6.1.2 The Command Level in IBM DOS

CONTENTS

vii

129
134
136
140

143

144
145
146
147
150
150
152
153
153
154
159
161
162
163
163
164
164
164

168

171
175
176
179
182
184
186
187
189
189
191

193

194
200
201

viii CONTENTS

6.2 RUN-TIME SUPPORT
6.2.1 Run-Time Support in CP/M for the INTEL 8080
6.2.2 Run-Time Support in IBM PC DOS
6.3 THE TWO-PASS ASSEMBLER
6.3.1 The CP/M Assembiler for the INTEL 8080
6.3.2 The Assembler for the IBM PC
6.4 LOADERS
6.4.1 Relocating Loader
6.4.2 Linking Loader
6.4.3 Program Libraries
6.4.4 Initial Program Load
6.4.5 Loading in CP/M for the INTEL 8080
6.4.6 LINK: The IBM PC Linkage Editor
6.5 CHAPTER SUMMARY AND PROBLEMS

Conditional Assembly and Macros

7.1 CONDITIONAL ASSEMBLY
7.2 MACROS
7.2.1 Parameters in Macros
7.2.2 Nested Calls
7.2.3 Nested Definition
7.2.4 Recursive Macros
7.2.5 Redefinition of Macros
7.3 CONDITIONAL ASSEMBLY AND MACROS IN CP/M AND DOS
7.4 SUMMARY AND PROBLEMS

Control of Input-Output and Concurrent Processes

8.1 DIRECT CONTROL OF INPUT AND QUTPUT BY THE CPU
8.1.1 Addressing I/0 Units
8.1.2 1/0 Buffering and Interrupts
8.1.3 Direct Memory Access 1/O

8.2 INTERRUPTS AND TRAPS
8.2.1 Traps
8.2.2 Interrupts
8.2.3 Interrupt Hardware and Processing
8.2.4 Concurrent Process Synchronization
8.2.5 Interrupts in the 8080

8.3 CHANNELS
8.3.1 Channel Computers

8.4 SOFTWARE FOR INPUT-OUTPUT
8.4.1 Device-Independent Input-Output
8.4.2 Buffering
8.4.3 Error Handling

8.5 CHAPTER SUMMARY AND PROBLEMS

203
207
214
220
224
228
232
232
234
237
238
239
240
241

247

248
251
252
257
259
260
261
261
267

270

270
272
273
275
276
276
278
279
282
286
287
288
289
290
292
294
295

9

10

11

12

The Hardware Level

9.1 AN OUTLINE OF COMPUTER DESIGN
9.1.1 CPU Data Flow
9.1.2 Memory Data Flow
9.2 CONTROL
9.2.1 Hard-Wired Control
9.2.2 Microprogram Control
9.3 MICROPROCESSOR SYSTEMS
9.3.1 The Z80 CPU
9.3.2 Memory
9.33 1/0
9.4 SUMMARY AND PROBLEMS

Multiprogramming and Multiprocessors

10.1 MULTIPROGRAMMING
10.1.1 Memory Allocation, Relocation, and Protection
10.2 MULTIPROCESSORS
10.3 TIMESHARING
10.4 SUMMARY AND PROBLEMS

The Assembler

11.1 PASS I: THE LOCATION COUNTER
11.1.1 Coding the Basic Assembler: Pass |
11.1.2 Programming Techniques
11.2 PASS I
11.3 PSEUDOS AND DIRECTIVES
11.3.1 Data Loading Pseudos
11.3.2 Directives that Affect the Location Counter
11.3.3 Directives that Affect the Symbol Table
11.3.4 Other Directives for Special Purposes
11.4 INTERMEDIATE LANGUAGE
11.5 RELOCATION, ENTRIES, AND EXTERNAL VARIABLES
11.6 MACROS
11.6.1 Expansion Methods
11.6.2 Macro Expansion in a Prepass
11.7 SUMMARY AND PROBLEMS

Searching and Sorting

12.1 SEQUENTIAL SEARCHING
12.1.1 Expected Length of Search
12.2 BINARY SEARCHING TECHNIQUES
12.2.1 Appiication of the Binary Search Method to the
Assembler Symbol Table

CONTENTS

ix

299

300
300
304
305
308
308
311
313
315
316
320

322

323
324
333
334
336

337

338
341
344
353
353
354
355
355
356
357
358
362
363
368
369

371

372
373
374

377

X CONTENTS

12.2.2 Comparison of Binary with Sequential Search
12.3 SORTING

12.3.1 Sequential Methods

12.3.2 Merging Methods

12.3.3 Radix Methods

12.3.4 Internally Sorting Long Records
12.4 HASH ADDRESSING
12.5 CHAINING TECHNIQUES

12.5.1 Sequential Search with Deletions

12.5.2 Binary Tree Method

12.5.3 Heapsort
12.6 SUMMARY AND PROBLEMS

INDEX

378
378
379
380
381
384
385
389
389
391
394
397

399

CHAPTER

INTRODUCTION

Computer programs can be written with no knowledge of the underlying architecture
(that is, the hardware organization) of the computer system that will be controlled by
the program. Indeed, modern programming practice stresses the desirability of making
programs machine-independent. For most purposes, the programmer can view a pro-
gram as a step-by-step description of a computational process without any regard for
the computer to be used. Any suitably precise language can be used to describe the
process, and a computer can be viewed as a device that is capable of understanding that
description by following the steps in the specified order in the same way a human reader
might. The only restriction imposed by the computer that the programmer need be
aware of is one of representation: the program and data have to be represented in a form
acceptable to the computer system to be used.

At the the other extreme, computer architecture can be designed with little attention
to programming languages. As long as the architecture is capable of representing
common data and of performing the fundamental operations (communication, data
manipulation, such as subtraction, and decision making by comparison. such as “Is X
greater than Y?”) we know that the computer can be programmed to perform any
computation. However, what is important in the architectural design is the ease and
speed with which common programs can be processed, and what is important in
programs for some large, difficult problems is the way in which they make the best use
of the computer structure.

In this book we will study the representation of programs and data in computers and
the organization of computers. Our goal is to understand how programs should be
written so that they can be efficiently processed. and how computers can be organized
to aid in attaining that goal. The emphasis will be on current computer architectures and
programming styles, so we will examine several popular examples of computers. In this

1

2 CHAPTER 1

study we will stress the view that the program is a process that is to be executed on a
computer. The data associated with the program and the current point of execution of
the progam is the state of the process. As the computer ‘‘reads’” through the program,
following the instructions specified in each step, the data values change as the computer
moves from step to step, and thus the state of the process changes. The computer
organization only affects the way in which the process is represented internally; the
average programmer is free to think of the process as represented in Pascal or any other
language, but internally it is represented in the form understood by the architecture,
called machine language. To understand the interplay between architecture and pro-
grams, we must study machine-level languages, which include actual machine lan-
guages and simple representations of them, called assembly languages, that are more
comprehensible to people.

It is often fruitful to glance over the historical development of a field to gain an
understanding of why things are the way they are, even in a field such as computer
science, in which most developments have occurred since 1945. The digital computer
was developed in answer to the need for quicker and more cfficient ways of handling
large numerical computations. Those computations arose in practical situations, as in
the solution of engineering problems such as the design of a bridge or plane and the
choice of heating-cooling strategies to minimize fuel consumption, as well as in the
course of theoretical endeavors, such as the attempt to locate prime numbers. (Locating
prime numbers is not a task of great economic value, but related problems are of
intellectual interest to mathematicians, and excess time on early computers was
used in such calculations.) Tasks such as these could have been doen without the help
of computer technology, but in many cases their value would have been negated by
the cost in human time and stress, not to mention the high probability of error in
human calculation.

However, some fairly large calculations had to be done before the development of
the automatic digital computer, and these were handled in the following way: They
were split into many sections — each relatively independent of the others — which were
then computed separately. Each section was broken down into a set of instructions and
the data to which it was to be applied. The various sections were then handed on to a
number of assistants who performed the indicated computations using hand calculating
devices. Now, the instructions and data are given to the digital computer; it performs
the routine tasks previously done by these assistants. (No matter how fast computers
are, it appears that society will always have problems that exceed the capacity of
computers. Today, some extremely large problems are broken into relatively indepen-
dent parts, and each part is solved on a separate computerlike device, although these
devices may be interconnected so that data and program can be transferred between
them. This is called parallel processing.)

After the initial use of computers in numerical problems, workers began to explore
other areas of application. It was noted that any finite class of objects could be related
to the sets of numbers that the computer could handle and could be manipulated in the
same way. Nonnumeric data processing became important. (Even before the automatic
digital computer, nonnumeric data processing had become available for some business
applications through the use of punched-card machines.)

INTRODUCTION 3

Nonnumeric processing is basically similar to numeric processing in that various
logical processes, or algorithms, which manipulate finite sets of objects (either num-
bers or other data) can be prepared for the same computer used to solve numerical
problems. At first, this was viewed as the numerical representation of nonnumerical
data. As an example, the letters of the alphabet could be assigned numeric values |
through 26, with a space represented by 0. (Space, or blank. as it is usually called in
computer usage, is one of the possible characters that a computer must be able to
“‘print’” on a page.) A machine capable of manipulating 8-digit decimal numbers could
then be used to manipulate four—or-less—letter words by replacing each letter by its
equivalent number and adding spaces (zeros) if there were less than four letters. Thus,
MOTH would be represented as 13 15 20 08 and MAT as 13 01 20 00. In this scheme,
words could be arranged alphabetically by arranging their numerical representations in
numerical order. MAT preceded MOTH because 13012000 is less than 13152008.

Through such techniques, business data processing, frequently involving the ma-
nipulation of large amounts of character data, was automated for computers. Non-
numeric processing has been extended to applications involving the manipulation of
abstract mathematical quantities, such as groups; to the problems of natyral language
translation, such as Russian to English: to graphical or pictorial data processing, such
as the matching of fingerprints or the examination of x-ray pictures for disease indi-
cations; to the control of complex processes, such as those involved in running oil
refineries; and to the control of robots.

Programs for the first computers were written directly in machine-level languages
by people who were familiar with the inner structure of the computer. As computer
applications grew in number and variety, the computer became available to people with
little knowledge of the details of its inner structure. A typical user now wants to specify
only the steps in a computational task, not the details of the way those steps are to be
executed in a particular computer, just as a person asking another person to retrieve a
letter from a file, for example. does not want to also describe how the file drawer should
be opened or how to alphabetize letters. Therefore, to the basic computer hardware
(that is, the physical parts of the computer) was added the software of svstem programs,
which handle many common operations for the user and which translate the language
of the user into that of the computer. The hardware and system programs together
constitute the computer svstem. The hardware provides the ability to do basic opera-
tions, the software the ability to specify the job in a convenient notation and to move
from one job to another without delay. The user sees the combination and does not
need to distinguish the two parts. Indeed. as technology changes. things once done
by software in early systems are done by hardware in later systems.

This book discusses computer organization by describing various ways in which the
basic hardware and software components of the computer are logically connected,
the reasons for the different organizations, and the advantages of each. This material
is then used as background for a discussion of the basic principles of machine-level
programming. These principles are illustrated by a discussion of some aspects of
(1) the translation of programs written in a language applicable to a task, called
a source language, into an equivalent program expressed in machine language;
(2) the scheduling of these user programs by other programs. usually referred to as

4 CHAPTER 1

kernel, executive, and supervisor programs; and (3) providing assistance to the
program in execution by system subprograms, which are typically concerned with
input-output and other communication.

A computer system should provide a tool for solving problems quickly — in terms
of the computer’s time as well as that of the user. The hardware should be designed to
operate as fast as possible within given cost limits. The software should be designed
to minimize the amount of wasted computer time and yet provide as flexible a means
of controlling the operation as possible. Computer functions that can be expected to be
fixed throughout the life of the machine should be provided by hardware where pos-
sible. Functions that will change — by increases in capabilities without the negation
of earlier properties—should be controlled by software. The objective of system
design must be one of minimum cost for the whole job, including the cost of pro-
gramming as well as execution on the computer. These considerations are as important
for the large central computers that process a great variety of jobs as for the micro-
computers that allow placement of a separate computer on everybody’s desk.

The programmer who programs at the machine level may be a system programmer,
that is, one who writes programs that will help other users access the computer system;
an application programmer who finds it necessary to work at the machine level in
sections of very large application programs where high speed is important; or a designer
faced with the development of a microcomputer for a single application. This book is
directed at all of these types of programmers.

1.1 THE BASIC CAPABILITIES OF COMPUTERS

A digital computer is capable of basic operations of finite sets of objects such as
numbers. These include the usual arithmetic operations of addition, subtraction,
multiplication, and division. In addition, a computer has the important ability to
compare two numbers or nonnumeric quantities in order to take one action if the
comparison is successful or another if it fails. These comparisons usually include tests
for greater than or equal to, equal to, less than, etc. In additon to operating on
information, the computer must be able to read the initial data from the user, retain it
for later computations, and write the answers for the user. Therefore, in addition to the
operational power, it has facilities for storing data and for reading and writing it in a
useful form. This form can be a human interface (such as keyboards, or printed output)
or the sampling of data signals and control signals to devices such as those used in
automatic flight control. The next few subsections will trace briefly the historical
development of these facilities and the importance of each new feature.

1.1.1. The Hand-Operated Calculator

The mechanical, hand-operated calculator was one of the first computing tools. With
its ability to perform the basic arithmetic operations it replaced a lot of tedious human
calculation. However, human intervention was still needed, both to control the steps in
the calculation and to retain intermediate results (by writing them on scratch paper). In
order to use a hand calculator effectively, the steps of a problem must be carefully
organized; that is, the sequence of calculations must be specified carefully. This

INTRODUCTION 5

specification is a progam that describes a process for the hand calculator. The process
can be executed by pushing the control keys specified for each step. Modern electronic.
hand-held calculators provide a number of storage registers that eliminate the need to
copy intermediate results. but the speed of a hand-operated calculator is limited by the
speed with which a human operator can issue instructions in the process by manually
pressing keyboard buttons.

1.1.2 The Stored-Program Computer

The step to stored-program computers, which bypassed the speed limitation imposed
by human control of processing. occurred in two stages. The first stage was marked by
the introduction of sequence-controlled calculators.' A fixed cycle of steps, that is, a
program, was prepared ahead of time. encoded, and stored on a punched tape or a
plugboard. The calculator got its sequence of operations from this storage device and
repeated the cycle of steps indefinitely. The capabilities provided by such mechanisms
were equivalent to those of a computer in which programs consisting of only one or two
simple assignment statements were executed repetitively.

These techniques were used for repetitive operations, such as summing numbers
punched in cards. With the addition of auxiliary cycles of steps that were activated
under certain conditions (and with a lot of ingenuity), quite sophisticated jobs were
tackled. The sequence-controlled calculator was limited by its inability to modify its
cycle of steps in any significant way because the cycle was stored in a semipermanent
memory such as a plugboard. Today, the more expensive hand-held calculators can
store programs.

The limitation of sequence-controlled calculators was overcome by the introduction
of the stored program computer,” in which the sequence of steps was stored in the same
memory as the data instead of in a separate memory such as a plugboard. Because

'Although sequence-controlled calculators were designed as carly as 1812, when Charles Babbage de-
signed his “Analytical Engine” (he was unable to complete it because of technological difficulties). the first
calculator capable of performing long sequences of calculations was the Harvard Mark 1. designed by Howard
Atken in 1937, built by IBM. and donated to Harvard University in 1944, [t was essentially mechanical. The
first electronic calculator was the ENIAC (Electronic Numerical Integrator and Calculator), designed by
J.P. Eckert and J. W. Mauchly of the Moore School of Electrical Engineering. University of Pennsylvania.
It was completed in 1945.

*The first design for a stored program computer was by Eckert and Mauchly of the University of
Pennsylvania. Many of the ideas resulted from the work of John von Neumann. a person who contributed
greatly to both mathematics and computer science. This computer. the EDVAC. was not finished until 1951.
Separate efforts of design and construction were occurring simultaneously in the United Kingdom. Alan
Turing. then at the National Physical Laboratory (NPL), had proposed a design for the Automatic Computing
Engine (ACE). That design was quite different from other designs and was heavily modified by others before
finally being built in a prototype version called the Pilot ACE. Manchester University and Cambridge
University were undertaking separate efforts. The EDSAC. designed at Cambridge in 1946 and opera-
tional in 1949, was probably the first operational stored program computer. but a prototype machine at
Manchester University was operational on June 21, 1948, and was probably the first stored program comput-
er to be operational. The latter was the basis for a subsequent design that was put into production by the
Ferranti company and became the first commercial computer. beating the better-known UNIVAC 1 by a short
period. The UNIVAC [was also designed by a team led by Eckert and Mauchly. For a brief historical
summary see the opening chapters in M. V. Wilkes, Awtomated Digital Computers. J. Wiley & Sons. New
York, 1956. For an interesting view of an unusual and important figure in those times. se¢ Andrew Hodges.
Alan Turning: The Enigma, Simon and Schuster, New York. 1983.

