Edward M. Reingold Data
Structures

Wilfred J. Hansen

Litle, Brown Computer Systems Series

Data
Structures

Edward M. Reingold

University of Illinois at Urbana-Champaign

Wilfred J. Hansen

Carnegie-Mellon University

ﬂiﬁ Little, Brown and Company

Boston Toronto

Library of Congress Cataloging in Publication Data

Reingold, Edward M., 1S45-
Data structures,

Includes bibliographies.
1. Data structures (Computer science)
I. Hansen, Wilfred J. II. Title.

QR76.9.D35RHL 1983 001,642 82-12697
ISBN 0-316-73951-0

Copyright © 1983 by Edward M. Reingold and Wilfred J. Hansen

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means including information storage and retri-
eval systems without permission in writing from the publisher, except by a
reviewer who may quote brief passages in a review.

Library of Congress Catalog Card No. 82-12697

ISBN 0-31&-73951-0

9 87 6 5 4 3 2

MV

Published simultaneously in Canada by Little, Brown & Company (Canada)
Limited
Printed in the United States of America

The cover is a reproduction of the first panel of the triptych Three Trees by
Karel Appel, reproduced by permission of Karel Appel.

Acknowledgment

The authors gratefully acknowledge permission to use material from
Reingold /Nievergelt /Deo, Combinatorial Aigorithms: Theory and Practice, ©
1977, pp. 280-315. Reprinted by permission of Prentice-Hall, Inc., Englewood
Cliffs, N.J.

Little, Brown Computer Systems Series

Gerald M. Weinberg, Editor

Barnett, Michael P., and Graham K. Barnett
Personal Graphics for Profit and Pleasure on
the Apple [I® Plus Computer

Basso, David T., and Ronald D. Schwartz
Programming with
FORTRAN/WATFOR/WATFIV

Chattergy, Rahul, and Udo W, Pooch
Top-down, Modular Programming in
FORTRAN with WATFIV

Coats, R. B., and A. Parkin
Computer Models in the Social Sciences

Conway, Richard, and David Gries
An Introduction to Programming: A Structured
Approach Using PL/I and PLIC, Third Edition

Conway, Richard, and David Gries
Primer on Structured Programming: Using
PL/I, PLIC, and PLICT

Conway, Richard, David Gries, and
E. Carl Zimmerman
A Primer on Pascal, Second Edition

Cripps, Martin _

An Introduction to Computer Hardware

Easley, Grady M.

Primer for Small Systems Management

Finkenaur, Robert G.

COBOL for Students: A Programming Primer

Freedman, Daniel P., and Gerald M. Weinberg
Handbook of Walkthroughs, Inspections, and
Technical Reviews: Evaluating Programs,
Projects, and Prbducts, Third Edition

Graybeal, Wayne, and Udo W. Pooch
Simulation: Principles and Methods

Greenfield, S. E.

The Architecture of Microcomputers

Greenwood, Frank
Profitable Small Business Compuling

Healey, Martin, and David Hebditch
The Microcomputer in On-Line Systems: Small
Computers in Terminal-Based Systems and
Distributed Processing Networks

Lemone, Karen A., and Martin E. Kaliski
Assembly Language Programming for the
VAX-11

Lias, Edward J.

Future Mind: The Microcomputer—New
Medium, New Mental Environment

Lines, M. Vardell, and Boeing Computer Services
Company
Minicomputer Systems

Mashaw, B. J.
Programming Byte by Byte: Structured
FORTRAN 77

Mills, Harlan D.
Software Productivity

Monro, Donald M.
Basic BASIC: An Introduction to Programming
Morrill, Harriet
Mini and Micro BASIC: Introducing
Applesoft®, Microsoft®, and BASIC Plus
Mosteller, William S.
Systems Programmer’s Problem Solver
Nahigian, J. Victor, and William S. Hodges
Computer Games for Businesses, Schools, and
Homes
Nahigian, J. Victor, and William S. Hodges
Computer Games for Business, School, and
Home for TRS-80%® Level II BASIC
Orwig, Gary W., and William S. Hodges
The Computer Tutor: Learning Activities for
Homes and Schools
Parikh, Girish
Techniques of Program and System
Maintenance
Parkin, Andrew
Data Processing Management
Parkin, Andrew
Systems Analysis
Pizer, Stephen M., with Victor L. Wallace
To Compute Numerically: Concepts and
Strategies
Pooch, Udo W., William H. Greene, and
Gary G. Moss
Telecommunications and Networking
Reingold, Edward M., and Wilfred J. Hansen
Data Structures
Savitchy Walter J.
Abstrdce ¥ ams and Grammars
Shneiderman, Ben
Software Psychology Human Factors in
Computer and Information Systems
Simpson, Tom, and Shaffer & Shaffer Applied
Research & Development, Inc.
VisiCalc® Programming: No Experience
Necessary
Walker, Henry M.
Problems for Computer Solutions Using
FORTRAN
Walker, Henry M.
Problems for Computer Solutions Using BASIC
Weinberg, Gerald M.
Rethinking Systems Analysis and Design
Weinberg, Gerald M.
Understanding the Professional Programmer
Windeknecht, Thomas G.
6502 Systems Programming

o e e——

Preface

I saw, when at his word the formless mass,
This world's material mould, came to a heap:
Confusion heard his voice, and wild uproar
Stood ruled, stood vast infinitude confin'd;
Till at his second bidding darkness fled,
Light shone, and order from disorder sprung.

Paradise Lost, John Milton

All information processed by a computer is ultimately encoded as a
sequence of bits; the specialized field of data structures considers how to impose
order and structure on those bits so that the encoded information is readily
available and easy to manipulate. This field thus includes the design, implementa-
tion, and analysis of structures and techniques for information processing at all
levels of complexity—from individual bits, characters, and words to aggregates
such as records and files, and from abstract structures such as stacks, trees, and
graphs to algorithms for searching, sorting, and storage management.

Data structures are central to computer science in general and to the
discipline of programming in particular. In the more analytic areas of computer
science, appropriate data structures have often been the key to significant
advances in the design of algorithms. Their role in programming is no less
profound: in most cases, once the appropriate data structures are carefully
defined, all that remains to be done is routine coding. A comprehensive under-
standing of data structure techniques is thus essential in the design of algorithms
and programs for all but the simplest applications.

Where there is such practical importance, college courses and textbooks are
sure to follow. Since the publication of Curriculum 68 by the Association for
Computing Machinery in 1968, a course in data structures has become a core
requirement in virtually every undergraduate and graduate program in computer
science. A number of texts have appeared, which by now seem outdated or

vii

viii Preface

inadequate. Moreover, in our teaching we have adopted a number of approaches
as preferable to those in most texts. In the present text, we have assembled a core
of material that is unlikely to be supplanted or revised by further research.

Organization. The chapters are organized in increasing degree of complexity
and abstraction, so each can be based on earlier ones. Throughout the book, for
each abstract structure we emphasize its conceptual identity as a set of operations
and its possible implementations in terms of the lower level structures already
discussed.

Chapter | introduces the algorithmic and mathematical notations we em-
ploy throughout the book by discussing a sample table search problem. This
discussion also serves to show the reader the scope of the techniques presented in
later chapters. Chapter 2 discusses elementary data objects at the machine
level—integers, characters, and so on—and how they are represented in bits (in
some curricula this material is covered in a different course; if so, it can be freely
omitted without interfering with later chapters). Chapter 3 then considers primi-
tive data structures composed of aggregates of primitive objects. It shows how
structures such as arrays, records, and pointers are represented in machines and
in typical high-level programming languages.

Building on this basis, Chapter 4 presents material on lists, their various
implementations, and the applications to, for example, stacks and queues, sparse
matrix representation, and graph representation. Chapter 5 discusses trees in
similar fashion: implementations and applications. These two chapters form the
core of the course, presenting between them the most important tools in the
design of data structures.

The next three chapters cover various more specialized problems that have
wide applicability. Chapter 6 examines the techniques used to allocate and
deallocate storage, Chapter 7 examines the organization of data for efficient
search, and Chapter 8 examines techniques for sorting.

The material in this book is more than sufficient for a one-semester course
in data structures; we have provided enough to fill a two quarter course. By
choosing only the first five chapters and selected material from the rest, the
instructor could cover most important topics in a single quarter, while a semester
would allow the inclusion of important additional topics. A two-semester course
might include discussions of the more important exercises as well as outside
reading to supplement their exposition.

Presentation. Our presentation is unique in several ways. We present only a
carefully chosen fraction of the material available but supplement it with a wide
vartety of exercises, many of which lead the student to discover interesting
alternatives. The more complex exercises and those requiring advanced techniques
are marked with a %*.

Preface ix

No single book or course can successfully discuss all known data structures
and algorithms; far too many minor variants have been devised for special
purposes. Rather than an encyclopedic catalog, we present the art of designing
data structures to prepare the student to devise his own special-purpose structures
for problems he will encounter.

Examples illustrating the techniques presented have been selected from
many different application areas, in order to indicate the importance and ubiquity
of data structures. In selecting examples and applications for presentation, we
have taken care to keep the presentations self-contained and to avoid undue
digressions.

Our presentation is machine and programming language independent. We
use if-then-else, while-do, repeat-until, and case for flow of control, and we have
chosen a functional notation for reference to the fields of a record. In this way
our notation is readily understood and unambiguous, but unencumbered by the
syntax of any specific language.

The presentation has been organized to be clear and interesting to both
undergraduate and graduate students. The material covered is accessible to
students who have completed an introductory programming course.

We recognize that the student must eventually be able to choose among
implementations on the basis of the analyses of the behavior of the corresponding
algorithms, but it is beyond the scope of this book to teach any but a few of the
basic mathematical techniques of algorithm analysis. We have skirted this issue in
part by giving brief sketches of the methods of analysis for certain key algorithms,
but mainly by just summarizing the results of analysis for most algorithms. Where
mathematical arguments have been unavoidable, we have emphasized the intui-
tion behind the argument.

We have not cluttered the presentation with involved discussions of the
origins of the various techniques, except where such discussions are necessary to
put the material in proper perspective. The annotated bibliography that concludes
cach chapter provides sources for students interested in deeper treatments of the
topics.

ACKNOWLEDGMENTS

Nothing corrupts a man as deeply as writing a book,
the myriad of temptations are overpowering.

Nero Wolfe, in John McAleer, Rex Stout: A Biography

No good textbook can be written in a vacuum. Without the comments and
suggestions of critical readers, the authors” impatience would introduce many
errors and careless presentations.

Preface

We are fortunate to have had the benefit of comments from a number of
critical readers, some voluntary (colleagues and reviewers) and some involuntary
(students). All added immeasurably to this book, but it is with special gratitude
that we thank Amitava Bagchi, Marcia Brown, and Nachum Dershowitz for the
time they spent in looking at the manuscript and making comments about it.

A very special acknowledgment is due to John S. Tilford who, in writing the
very complete solution manual available for this text, suggested innumerable

improvements in the presentation.

EM.R.
W.1LH.

TO THE READER

Si qua videbuntur chartis tibi, lector, in istis
sive obscura nimis sive Latina parum,
non meus est error: nocuit librarius illis
dum properat versus adnumerare tibi.
quod si non illum sed me peccasse putabis,
tunc ego te credam cordis habere nihil.
“Ista tomen mala sunt.”’ quasi nos manifesta negemusl!
haec mala sunt, sed tu non meliora facis.

Martial, Epigrams, I, viii

Contents

Concepts and Examples

1.1 Data Structures

1.2 Notation

1.3 Search

1.4 Efficiency
1.4.1 Expected Value and Worst Case
1.4.2 Operator Counts
1.4.3 Space-Time Analysis

Elementary Data Objects

2.1 Boolean Operations and Logical Values
2.2 Integers
2.2.1 Conversion of Integers From One Base to Another
222 Enumerated Types
2.2.3 Character Representations
2.3 Packed Words
2.3.1 Signed Integers
2.3.2 Floating Point
2.3.3 Strings
2.4 Reliability and Efficiency
24.1 Reliable Codes
242 Efficient Codes
2.5 Remarks and References

Elementary Data Structures
3.1 Arrays
3.2 Records and Pointers

19
28
28
32
34

39

42
51
51
35
56
60
62
65
69
74
77
80
87

88
88
96

xi

xii

3.2.1 Examples of Records and Pointers
Random Access in Arrays
Call-by-Reference
Variable-Length Strings
Secondary Storage

3.2.2 Typical Programming Language Notations

3.3 Implementations in Memory

3.3.1 Arrays

3.3.2 Records and Pointers

3.4 Remarks and References

4 Lists

4.1 Linked Lists
4.1.1 Implementations of List Elements
4.1.2 Sublists and Recursive Lists
4.1.3 Common Variants of Linked Lists
4.14 Orthogonal Lists
4.2 Stacks and Queues
42.1 Sequential Implementation
422 Linked Implementation
423 Applications of Stacks and Queues
Stacks and Recursion
Stacks and Arithmetic Expressions
Queues
4.3 Graphs
4.3.1 Breadth-First Search
4.3.2 Depth-First Search
Connected Components
Topological Numbering
44 Remarks and References

5 Trees
5.1 Linked Representations
5.1.1 LEFT and RIGHT Pointers
5.1.2 Father Pointers
5.2 Traversals
5.2.1 Applications
Copying a Binary Tree
Printing a Binary Tree
Arithmetic Expressions
5.2.2 Threaded Trees

Contents

105
105
105
106
107
109
112
115
120
122

123

125
133
135
147
151
155
157
161
163
163
167
172
175
178
181
181
182
186

187

194
195
200
206
216
216
217
219
222

Contents xiii

5.2.3 Sequential Representations of Trees 232
5.3 Quantitative Aspects of Binary Trees 236
5.4 Remarks and References 244
Memory Management 246
6.1 Uniform Size Records 246

6.1.1 Explicit Release 248

6.1.2 Garbage Collection 249
6.2 Diverse Size Records 253

6.2.1 Allocation by Search 255

Performance 258

6.2.2 Compaction 261
6.3 The Buddy System 265
6.4 Remarks and References 270
Searching 271

O Notation 272
7.1 Searching Lists 272

7.1.1 Sequential-Search Techniques 273

7.1.2 Lists in Natural Order 277
7.2 Binary Search Trees 282

7.2.1 Static Trees 284

7.2.2 Dynamic Trees 296

Height-Balanced Trees 302
Weight-Balanced Trees 311

Applications of Balanced Trees to Lists 319

7.3 Digital Search Trees 328
7.4 Hashing 332
7.4.1 Hashing Functions 334
Extraction 334

Compression 335

Division 337
Multiplication 337

Summary 339

7.4.2 Collision Resolution 340
Chaining 341

Linear Probing 348

Double Hashing 351

Ordered Hash Tables 355

Deletion and Rehashing 359

xiv Contents

7.5 Tables in External Storage 364
7.5.1 Balanced Multiway Trees 365
7.5.2 Bucket Hashing 374

7.6 Remarks and References 375

8 Sorting 377

8.1 Internal Sorts 378
8.1.1 Insertion Sort 378
8.1.2 Transposition Sorts 382

Bubble Sort 382
Quicksort 385
8.1.3 Selection Sorts 394
8.1.4 Distributive Sorts 403
Radix Distribution 403
Value Distribution 406
8.1.5 Lower Bounds 408

8.2 Related Problems 410
8.2.1 Selection 411
8.2.2 Merging 414

8.3 External Sorting 418
8.3.1 Initial Runs 418
8.3.2 Tape Merge Patterns 422

Polyphase Merge 423

Cascade Merge 429

Buffering 432

8.3.3 Disk Merge Techniques 435
8.4 Remarks and References 438

Index 440

Chapter 1

Concepts
and Examples

So she went on, wondering more and more at
every step, as everything turned into a tree the moment
she came up to it.

Through the Looking Glass, Lewis Carroll

Data structures represent data and relationships among data for
manipulation by computer systems; data bases are an important class of computer
system. To distinguish these three terms and to establish the context for our study
of data structures, this section briefly explores the topics of data and data bases.

Data are considerably more than just a collection of numbers; each number
must be interpreted as part of a model. For example, the values 153 and 169 are
meaningless until described as the 1970 and 1980 counts of the number of United
States cities with population over 100,000. To a company that sells to large cities,
these values help define the market and its possible growth, but only when they
are interpreted as part of a model of cities. In general, a model has representa-
tions of objects. In typical models the objects might be physical objects, persons,
events, or abstract concepts. For the purpose of the model, certain artributes of
each object are selected and the value for each is recorded. The collection of
attribute values is then the representation of the object.

The usual purpose of a model is to analyze the behavior of the objects
represented. For instance, models of wing sections of aircraft are evaluated in
wind tunnels to determine whether the corresponding real wing will fly without
turbulence; models of the economy are evaluated to determine the effect of
possible changes in the money supply. Because models do not reflect all proper-
ties of the real object, care must be taken in evaluating the results of computa-
tions with the model. The models of the wings or the economy may predict good

2 1 Concepts and Examples

behavior, but disaster can occur in reality if crucial parameters have been omitted
or misrepresented.

A computer data base is one common form of model. The simplest data
bases have one record for each object, and each record contains values corre-
sponding to the object’s various attributes. The data base itself is a model of the
entire collection of objects, while each record is a model of a specific object. The
term “record” derives from manual filing systems where, say, a personnel file will
have one folder (record) for each employee (object). Each captioned space of a
form in the folder is an attribute of the employee.

Whether manual or mechanized, the personnel data base solves both peri-
odic and one-time problems. One periodic problem is that of paying all em-
ployees each week; this requires a sequential process that goes through the entire
data base writing checks. A possible one-time problem is that of finding an
employee with the skill for some special task—for example, guiding a visitor who
speaks Mandarin Chinese. Such a request for information from a data base is
called a query. It may be met by scanning the entire file, but if an appropriate
index exists, only a fraction of the records need be examined.

Large corporations maintain data bases to model many aspects of their
business. Human relations are covered by records on employees, departments,
suppliers, customers, and stockholders. The work is represented by files on plans,
designs, warehouse contents (inventory), and projects in progress. The financial
picture is given by budget, accounts payable, accounts receivable, general ledger,
assets, and liabilities. As with all data bases, there are many relationships among
these files. An employee is in a department, is working on projects, is accounted
for by a budget line, may be a customer, and may be a stockholder. A project is
performed by employees, may have budget items, requires material from sup-
pliers, and may be slated for delivery to some customer. Typical contents of
corporate files are shown in Table 1.1, and possible relationships are illustrated in
Figure 1.1.

Table 1.1 shows two visits on April 1. In the first, Willie Clout proposed
purchase of a software package for sorting. In the second, Al Bennet, software
salesman, presented the benefits and costs of enhanced software for the visitor’s
log. From the budget data it seems the log has higher priority than sorting.

With on-line data base systems a manager can pose gueries and get answers
quickly. For example, suppose the president is impressed by Clout’s sort presen-
tation, The decision-making process might involve several queries, perhaps start-
ing with

Find budger_item with name containing “sort.”
Show amount_budgeted.

In response to this query the system searches the data base, or part of it, to find
the appropriate record(s).

1 Concepts and Examples 3

» Departments

employs administered

supervised
by

<>

Employees

Budget

@ Visitor Log ®
Figure 1.1

Relationships among the data bases of a corporation. Rectangles are data
bases; diamonds are relationships between them. Ttems in the data base at the
tail of an arrow refer to items in the data base at the head of the arrow. For
example, the upper right diamond represents the fact that each budget item
lists the department responsible for administering that item. The multiheaded
arrow indicates that departments employ more than one person.

Such search problems are quintessential to computer science; they are the
principal focus of the study of data structures. In the remainder of this chapter we
will use a simple search problem together with two elementary solutions to
illustrate our notation and important aspects of algorithmic analysis. More
difficult search problems and intricate solutions are presented in Chapter 7. It is
often necessary to sort data into order (for example, alphabetical or numerical) to
accomodate searching it; sorting algorithms are discussed in Chapter 8. To
facilitate searching and sorting, data are stored in lists and trees, presented in
Chapters 4 and 5, respectively. In turn, the manipulation of lists and trees
requires that memory be organized for rapid allocation. Such memory manage-
ment techniques are treated in Chapter 6. Chapters 2 and 3 present the basic
components from which lists, trees, and other structures are composed.

Exercises

Complex exercises and those requiring advanced techniques are keyed *.

1. Typical automated weather forecast systems subdivide a region and represent
weather conditions in each sector. What data attributes might be chosen for a
sector? What is a reasonable size for a sector? With your above choices, how
many data values must be stored for the 10® square miles of the earth?

I Concepts and Examples

Departments

No. Name Supervisor Personnel
37 Information Systems (R. S. Teague) (P. Larsen,...)
52 Executive Suite (H. R. Ahner) (R. Stocks,...)
Budget

No. Name Dept. Amount Increase (%)
37-291.5 Sort Package 37 4750 4
52-153 Visitor Log (52) 7000 15
Employees

No. Name Dept. Salary Hire Date
1728 H. R. Ahner (52) 65,200 5/28/79
1967 R. S. Teague &) 54,360 4/11/67
2053 P. Larson 37 13,200 10/30/81
2271 R. Stocks (52) 25,600 1/1/82
Visitor Log

Date Time Min. Visited Visitor Budget Item Topic

4/1/84 11:30 13 (Ahner) W. Clout (37-291.5) Better sort
4/1/84 11:55 86 (Ahner) A. Bennet (52-153) Improved log

Table 1.1

Data bases for a corporation. The attributes shown are only a selection of the
much larger number of attributes in the file. A value in parentheses is a
reference to a record in another file; it may be just the value shown, or it may
be an encoding of the location of the appropriate record.

. Sometimes it is difficult to distinguish an object from its representations. For
instance, a computer program may have many different physical representa-
tions. List at least five and for each, argue that it, rather than the others, is the
“program” itself.

. Each record in a payroll file represents a person as its object. What attributes
might objects in this file have?

. What steps might a system take to respond to a query from the president for
all budget changes that were above average in value?

. The visitor log data base contains a reference to the budget item discussed
during the visit. This might be implemented as the number of the budget item
or as the address that describes where the budget item is stored. Each solution
has an advantage over the other; give these advantages. Consider speed of
operation and the difficulty of changing the data base.

. What data bases might a college or university implement? What are some
queries that might be generated to work on the following problems?

(a) How can we give raises when total income has not risen?

1.1 Data Structures 5

{b) Should we limit the number of faculty given tenure?

(c) Have academic standards changed? Is there grade inflation or deflation or
has the quality of the students changed?

(d) Shall we build a new building for the Computer Science Department?

1.1 DATA STRUCTURES

A data structure can be defined informally as an organized collection of values
and a set of operations on them. For the integer data structure, the operations are
just addition, multiplication, and so on; for a data base, the operations may
include complex queries. But most data structures fall between these extremes: an
array has storage and retrieval via subscripts; a table of names has the operations
of insertion and search.

Somewhat more formally, we define a data structure to have three compo-
nents:

A set of function definitions: each function is an operation available to the
rest of the program.

A storage structure specifies classes of values, collections of variables, and
relations between variables as necessary to implement the functions.

A set of algorithms, one for each function: each algorithm examines and
modifies the storage structure to achieve the result defined for the
corresponding function.

The function definitions separate the implementation of the data structure from
the construction of the rest of the program. They define the externally observable
behavior of the data structure, while the storage structures and algorithms are the
internal details. The latter can be changed without modifying routines that use
these functions.

One simple example of a data structure is an array. As an introduction, we
will define an array of twenty real values with integer subscripts. The set of
functions is

store: Must be given a value and a subscript. Associates the value with that
particular subscript.

retrieve: Must be given a subscript. Reports back the value most recently
associated with that subscript.

As these descriptions show, functions must sometimes be given values. We can
also say the values are required by the function or are its arguments. A function
may report back or return a value, as does retrieve. A function may also
communicate back a value by assigning it to a variable.

