. A %‘— L E
:_Mmg-‘.usm'vw\aw%_ m s Aeiliicad i ful e s 7 d

| THE CRAFTOF
SOFTWARE
ENGINEERING

Allen Macro
John Buxton

THE CRAFT OF
SOFTWARE
EN%I NEERING

en Macro

Independent Consultant

John Buxton

King's College London

A
vy
ADDISON-WESLEY
PUBLISHING
COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park, California
Don Mills, Ontario - Amsterdam - Bonn - Sydney - Singapore
Tokyo - Madrid - Bogota - Santiago -San Jjuan

© 1987 Addison-Wesley Publishers Limited.
© 1987 Addison-Wesley Publishing Company, Inc.

All nghts reserved. No part of this publication may be
rep-oduced, stored in a retrieval system, or transmitted .
in any form or by any means, electronic, mechanical,.
phototopying, recording or otherwise, without prior
written permission of the publisher.

Cover graphic by kind permission of Apollo Computer, Inc.
Typeset in 10/12 pt Times by Columns, Reading.
Printed and bound in Great Britain by TJ Press (Padstow) Ltd, Cornwall.

British Library Cataloguing in Publication Data

Macro, Allen
The craft of software engineering.—
(International computer science series)
1. Electronic digiial computers -
Programming 2. Computer engineering
1. Title 1II. Buxton, John IIl. Series
005.12 QA76.6
ISBN 0-201-18488-5

Library of Congress Cataloguing in Publication Data

Macro, Allen
The craft of software engineering.
(International computer science series)
Includes index.
1. Computer software — Development. 2. Electronic
digital computers — Programming. I. Buxton, J.N.
I1. Title. MI. Series.
QA76.76.D47M33 1987 003.1 86-32076
ISBN 0-201-18488-5

INTERNATIONAL COMPUTER SCIENCE SERIES

Consultiag editors A D McGettrick University of Strathclyde
J van Leeuwen University of Utrecht

OTHER TITLES IN THE SERIES

Programming in Ada (2nd Edn.) J G P Barnes

Computer Science Applied to Business Systems M J R Shave and K N Bhaskar
Software Engineering (2nd Edn.) I Sommerville

A Structured Approach to FORTRAN 77 Programming T M R Ellis
An Introduction to Numerical Methods with Pascal L V Atkinson and P J Harley
The UNIX System S R Bourne

Handbook of Algorithms and Data Structures G H Gonnet

Office Automation: Concepts, Technologies and Issues R A Hirschheim
Microcomputers in Engineering and Science J F Craine and G R Martin
UNIX for Super-Users E Foxley

Software Specification Techniques N Gehani and A D McGettrick (eds.)
Data Communications for Programmers M Purser ‘

Local Area Network Design A Hopper, S Temple and R C Williamson
Prolog Programming for Artificial Intelligence I Bratko

Modula-2: Discipline & Design A H J Sale

Introduction to Expert Systems P Jackson

Prolog F Giannesini, H, Kanovi, R Pasero and M van Caneghem
Programming Language Translation: A Practical Approach P D Terry
System Simulation: Programming Styles and Languages W Kreutzer
Data Abstraction in Programming Languages J M Bishop

The UNIX System v Environment $ R Bourne

UNIX™ js a trademark of AT & T Bell Laboratories.

=yt I T R T TR g B S R R n g

N

Allen Macro (BSc.; FBCS), the main author. has over 28 years of
practical experience in software engineering and its management. He is
sometime employee of the UK Atomic Energy Authority, founder and
director of CEIR NV (now part of Scicon) and LOGICA BV, and
consultant to major international companies including Philips Electronics
and Royal Dutch Shell. He is a specialist in continuing education in
software engineering and can be contacted at:

Serend (BYVY)

Valerius Rondeel 215
2902 CG Capelle a/d Ijssel
Nederland

Tel: 010 4507519

John Buxton (MA; FBCS), Professor of Information Technology at
King’s College London University, is a spccialist in software development
environments and languages. He was formerly Professor of Computer
Science at the University of Warwick, and has been consultant to major
international organisations including Philips Electronics and others; as
advisor for thé ‘Stoneman’ initiative of the US Department of Defense
he was main author of the ‘Stoneman’ report on requirements for an Ada
language support environment. '

Preface '

To most people, including a surprising number whLo program compaters,
software engineering is a mystery. Many adopt the attitude of the
orchestra conductor who, when asked if he had ever performed work by a
certain composer, replied: ‘No, but I once nearly trod in some of it"” As
Sir Thomas Beecham might well have agreed, such freedom of comment
is often based on ignorance.

Software engineering has become, in fact, well known as a most
difficult, costly and hazardous part of information technology. Some
would say it is the most problematical technclogy of all, so many and
severe have been the problems of software quality and adherence to
estimates.

This book is for people who need and want to know what software
engineering is, and how to do it. As well as practising software engineers
and some more intermittent practitioners, wc envisage amongst 'its
readers a wide variety of people who are not specialists in the subject but
who affect the software engineering process in one way or another. For
instance, users who specify requirements; commercial and legal staff who
may decide timescale and cost limitations on a software development;
hardware engineers determining and working to a subsystem interface
with software engineers; quality assurance departments and field support
groups involved with software maintenance; personnel officers recruiting
and helping to retain ‘rare resources’; and so on down an extensive list.

Information Technology (IT) is now a major factor in everyday life.
Governments see it as ‘the sunrise sector’ compensating for declining
industries and, through its products, rejuvenating some whose means and
methods are obsolete. Competition is fierce for a share in, or even
domination of, its lucrative markets and, in view of the strategic issues
involved, both economic and military, no industrialized society wants to
become a large and permanent net importer of IT systems.

Thus, major national and international research and development
policies are set, and the education sector is reformed and selectively
financed in some countries as a palliative for supposed shortages in skills.
For many practitioners and their managers, this is ‘jam tomorrow’. In the
meantime, IT developments go on, and — within them - so does software
engineering, still beset tv many of its old problems. For, in many cases,
they are old problems — over three decades old in fact — now exacerbated
by the expansion rate of IT applications and product innovation.

vii

viii PREFACE

Some day - no one quite knows when, of course — the research
initiatives now undertaken — such as the Strategic Defense Initiative in
the USA, Japan’s ‘Fifth Generation’ projects, the EEC’s Esprit and
Eureka programmes, the work of the Alvey Directorate in the UK and
similar ones elsewhere ~ may further revolutionize IT and cure some (if
not all) of the problems of making complex software. Until then software
engineers, along with their managers, commercial = 1d technical colleagues,
will have to make software systems as best possible. That ‘best’ must not
be as poor as it has been to date in many places, if IT is to have its
beneficial effect. :

For software engineering to be improved at this time, even within the
known limitations of technical means and methods currently applying
(and likely to do so for some time yet), it is imperative that the process of
software engineering is understood between its exponents and the other
populations involved. This book is intended as a bridge between people
of different backgrounds, who are active parties to making software
systems. Software engineering is not intrinsically unmanageable, but it
may be made so. Software developments are not inevitably of
questionable or poor quality, nor do they always over-run by 400% or
more on cost budget — but these things may, all too easily, occur.

The problems of shared understanding and a shared vocabulary for
expressing it are at the root of mismanagement and misdirected effort in
software engineering, and are major causes in our view of the somewhat
traumatic history of the subject. The problems are illustrated in the well
known sketch:

Two deaf men are on a train as it approaches a London suburb:
‘Is this Wembley?’
‘I thought it was Thursday.’
‘So am IV

We submit this work to its readers and critics in the modest hope that it
helps to alleviate deafness.

Acknowledgements

The whole of this text was prepared by one lady only; she has put up
with highly volatile source material and the sort of behaviour one might
expect to go with it, shameful handwriting from both authors (not to
mention accompanying attitudes), under-estimated timescales, and a
word processor whose software clearly had been written by amateur
programmers. Naturally, having typed Section 6.3 on team structure, the

ACKNOWLEDGEMENT ix

lady (in the best spirit of teamwork) wished to remain anonymous. But
we are most grateful to this honorary software engineer.

A. MACRO
Capelle al/d {ssel,
The Netherlands

J.N. BUXTON
Kings College, London

The Publishers wish to thank the following for permission to reproduce
extracts from published material:

» :
Professor F.L. Bauer, for a quotation from Software Engineering
(Amsterdam: North-Holland, 1972).

Barry W. Boehm, for quotations from Software Engineering Economics,
pp. 75, 118, 374, 460, adapted by permission of Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey. -

Professor M.M. Lehman, for permission to adapt definitions given in
Programs, Programming and the Software Lifecycle, Dept. of Computing
and Control, Imperial College, London.

G.J. Myers, for a quotation from Reliable Software Through Composite
Design (New York, Van Nostrand Reinhold, 1975).

C.H. Smedema, et al., for a passage adapted from The Programming
Languages Pascal, Modula, Chili, Ada (London, Prentice-Hall, 1985).
T.A. Thayer, et al., for a quotation from Software Reliability (Amsterdam,
North-Holland, 1978). '

The IBM Systems Journal, for permission to reproduce a table from the
article by Walston and Felix, ‘A method of program measurements and
estimation’.

Professor A.1. Wasserman, for a quotation from Towards Improving
Software Engineering Education (New York, Springer Verlag, 1976).

Contents

Preface

L.

Introduction

1.1 Definitions: IT, software engineering, and programmers
1.2 A short history of software engineering

1.3 Current problems in software development

1.4 The authors’ approach

Software engineering

2.1 An extended definition and description

2.2 The software engineering process; complexity
2.3 Software system types

2.4 The software competence audit

Managing software development: fundamental issues

3.1 Comprehension
3.2 A software ‘lifecycle’ model
3.3 Visibility; archiving

- 3.4 Active management and the practice of

structured walkthrough
3.5 Controlling specification change
3.6 Prototyping and single-author tasks
3.7 Coda

Specification and feasibility

4.1 An overview of specification issues

4.2 Conceptualizing requirements, and feasibility

4.3 The User Requirement Specification (URS)

4.4 The Functional Specification (FS)

4.5 The Outline Systems Design (OSD)

4.6 Variations on the lifecycle model

4.7 The outcome of the specificaticn and feasibility stage

Estimating effort and timescale

5.1 An overview of estimating
5.2 Estimating practices

102

xi

xii

10.

11.

CONTENTS

5.3 Pitfalls

5.4 The ‘OSD/activities plan’ method

5.5 Research into parametric cost models

5.6 Lifecycle phasing and person dependency
5.7 The effort-timescale relationship

5.8 Estimating prototype development

Organizing and controlling software development

6.1 Task planning and control
6.2 Necessary documentation
6.3 Team structure: The ‘peer group Chief Programmer Team’
6.4 Managing transformation

Systems and software design

7.1 Principles of good design
7.2 Some design appfoaches
7.3 Design practices and notations

Implementation

8.1 Low-level implementation

8.2 Choice of programming languages

8.3 Programming Support Environments (PSE)
8.4 Programming Language trends

Software quality

9.1 Basic issues

9.2 Definitions: Verification, Validation, Certification
9.3 The quality process

9.4 Criteria for software quality

9.5 Quality demonstration by testing

9.6 Quality Control, Inspection and Assurance practice

Additional management issues

10.1 Deliverable documentation - ;

10.2 Maintenance, new versions, and configuration management
10.3 Personnel issues

10.4 Software engineering education

10.5'Contracting

10.6 A checklist for good software engineering practice

Casestudy: extracts from an archive

Index

102
107
113
130
131
135

137

137
139

147

156

163

163
171
180

210

210
215
219
226

228

228
231
233
235
246
256

261

261
272
280
285
296
302

305
379

Chapter 1 Introduction

Synopsis

Definitions are given for information technology and software engineering.

An account is given of the problems experienced in computer programming
over the past three and a half decades, and how software engineering became
Big and Bothersome.

The adverse factors currently affecting software engineering are summarized.

The approach adopted in this book is described and explained. The
authors nffer some advice to different types of readers on how to use this work.

It is taken for granted that the reader will be familiar with basic terms in
computer technology (such as ‘bit’, ‘byte’, ‘compiler’, ‘high-level
language’, and so on), or will have access to a lexicon of these terms such
as the Dictionary of Computer Science (Glaser et al. 1983). Other terms -
more to do with software engineering as a process (e.g. ‘lifecycle’,

‘functional specification’, ‘outline systems design’, and a variety of others)
will be defined and described in the appropriate chapters of this book.

1.1 Definitions: IT, software engineering, and
programmers

To begin with, the terms ‘information technology’ and ‘software
engineering’ need to be clarified. They are often used in the most
imprecise fashion and their meanings thought to be common knowledge
when, in fact, they are not. For instance, Information Technology (IT),
Informatique, Informatica and (no doubt) many other variants, are
apparently synonyms with only a loosely defined, generic meaning as they
are commonly used. Given the scope and importance of the activities they
seem to include, this state of affairs is unsatisfactory.

Recently, a working group in the United Kingdom — under Mr John

1

2 THE CRAFT OF SOFTWARE ENGINEERING

Butcher, MP — produced a definition of IT in the course of reporting on
its ‘skills shortages’. This definition (Butcher ez al., 1984) comprised
Electronit systems and consumer electronics

Telecommunication and radio frequency engineering

Computing (software and hardware)

Computing services

Artificial intelligence

Communication between electronic data processors

Design and production of manufacturing systems (as distinct from
their applications)

Classification can be difficult, particularly when categories overlap, are
contiguous with unclear demarcation, or are cognate. The Butcher
committee’s definition is, with all its defects, a useful and succinct
indication of the scope of IT. In the process it also makes clear the central
importance of computers (essential to all eight components of the
taxonomy) and, in doing so, highlights the central rdle of software
engineering.

If, as is the case, software engineering is a ‘problem subject’, then
that matter is as central to the interests of a company or country as is IT
itself. If we must innovate to thrive economically, then we must solve the
problems of software engineering with some urgency. ’

What then is ‘software engineering’? In fact the term is more often
used to denote programming — or even just the coding part of -
programming - than anything more extensive. The reasons for this are
historical. Getting computer hardware to solve particular problems by
executing sequences of commands was known as ‘programming’ and its
exponents were known, therefore, as ‘programmers’. As the first
programmers were the problem solvers anyway (applied scientists and
engineers) there were no problems with the definition. When, later, a
tendency developed for the problem formulators to have programs
written (often in a high-level language) by others, ‘this task became
known as ‘coding’ in some places. The inevitable confusion between two
not explicitly defined terms was not helped when, around 1968 or so, the
term ‘software engineering’ took on widespread use to denote a set of
activities including ‘programming’ and ‘coding’.

Nowadays, it should be taken that ‘coding’ is that part of
programming that has to do with producing the sequence of instructions
in a computer language to get the hardware to do whatever is required;
‘programming’, on the other hand, is the design of computer programs,
their coding and testing by their authors as single programs or in
combination with others as necessary.

Software engineering itself is the whole set of activities needed to

INTRODUCTION 3

pr.oduce high-quality software systems (programs or suites of programs),
within known limitations of resources such as time, effort, money,
equipment, etc. These activities include specifications and feasibility
(including prototyping if necessary), programming as defined above,
quality control and assurance, and documentation.

As long ago as 1972 Bauer defined software engineering as:

The establishment and use of sound engineering principles in order
to obtain, economically, software that is reliable and works on real
machines. '

No doubt ‘sound engineering principles’ include management consider-
ations, but there is a definite need to make that explicit. Also, the Bauer
definition is less than clear on the need for adequate ‘tools’ to support the
craft, as distinct from ‘engineering principles’. .

An extension of Bauer’s definition in the current epoch might
reasonably be that software engineering is:

The establishment and use of sound engineering principles and
good management practice, and the evolution of applicable tools
and methods and their use as appropriate, in order to obrain —
within known and adequate resource provisions — software that is
of high quality in an explicitly defined sense.

A more detailed description of software engineering, including its main
perceived properties as a process, is given in Chapter 2, along with a
definition of software systems types resulting from the software
engineering process.

Software engineers are people of sufficient relevant aptitude and
ability who perform software engineering (in the sense in which it is
defined above) as the whole or a major part of their vocation.

The ‘relevant aptitude’ attributes are far from easy to define, but are
generally agreed to include literacy as well as numeracy, and mental
characteristics such as associative abilities, capability in abstract thought,
good memory and painstaking precision. As temperamental stability is a
desideratum too, the unlikelihood of the combination is one reason why
there is a shortage of good software engineers.

The ‘ability’ of software engineers, given the aptitude factors, is very
much dependent on the variety and difficulty of software engineering
tasks with which they are confronted, and the environment in which they
make software (i.e. whether it has a strong ‘culture’ in good software
engineering practice, as defined, at all levels; where it lacks such a strong
culture it may be said to be a ‘weak’ software engineering environment).

Ability also concerns the stage that software engineers have reached
in consolidating their subject knowledge into a framework of practice
sufficient for most eventualities, yet fiexible enough to be extended and
modified when necessary. A career trajectory of increasing ability in this

4 THE CRAFT OF SOFTWARE ENGINEERING

sense begins with an apprenticeship, and proceeds through junior and
senior software engineer levels to that of ‘master’ in the craft. This latter
status is quite widely known as ‘chief programmer’ for historical reasons;
properly the term should be ‘chief software engineer’, or even ‘master
software engineer’.

The topics of career development and subject education for software
engineers are taken further in Sections 10.3 and 10.4. One major
problem, due for passing comment here, is that the ‘consolidation’ of
acquired knowledge may be inordinately delayed or even prevented
altogether in weak software engineering environments. When this
happens the ‘software engineers’ may more properly be categorized as
‘amateur programmers’.

Not all computer programs are written by people whose main job it is
to do software engineering. Many hardware engineers, whose main
" vocation is electronics, are intermittent programmers spending in the
range of 10-40% of their time programming.

As with software engineers in weak environments, intermittent
programmers are unlikely to have the strong background of experience,
means and methods to permit the consolidation of acquired knowledge
into a viable and practical conceptual framework. Merely knowing how to
program in ABC language on an XYZ computer, having done it for a few
weeks last year and the year before, is not enough — even if the results
seemed to ‘work’. The result is not software developed as a strong
process of software engineering, by what may reasonably be viewed as
~ software engineers, but programs written by ‘amateurs’ — people whose
vocational specialization is, in many cases, in another subject altogether.
As a result, its exponents are known as ‘amatéur programmers’ — a
category that contains a wide variety of people including some ‘software
engineers’ and computer scientists, and many hardware (electronic)
engineers. '

The growth rate of the IT sector has led, ineluctably, to a very rapid
growth in amateur programming. This is, of course, a major factor within
the so-called ‘software engineering crisis’ one reads and hears about. For,
whereas software engineering will be likely to produce software of
requisite quality within the limits of resources provided (so long as these
are adequate), amateur programming will be unlikely to do either on a
consistent basis.

A third category of people who write computer programs is that of
hobbyists. Whereas software engineers and amateur programmers write
programs as part of their job of work, hobbyists do it for instruction or
entertainment. Typically, a hobbyist will learn to program in BASICon a
Personal Computer (PC).

One major positive use of hobbyism is for managers and others who
are not specialists in software engineering, as a part of an orientation in
the subject. One negative effect of hobbyism is when it leads to amateur

INTRODUCTION L3

programming. ‘Give the job to Fred — he knows all about computers’ is a
grave mistake if the problem is large and complex, and all Fred has ever
done is to write a couple of 20 statement programs in BASIC on his PC.
Hobbyism has received a great boost in recent years through the policy of
governments, enthusiastically supported by equipment manufacturers
of course, to popularize computer technology. Putting a PC in every
classroom, or a terminal on every desk, is a great idea for encouraging
the development of some basic aptitudes and subject interest in
secondary-school students. If, as it may, it leads to more and more
amateur programming in a few years’ time, it will have been rather
counter-productive.

There is a software engineering ‘crisis’ at the present time. A
summary of contributory reasons for it is set out in Section 1.3. Some of
them are evident from what has already been said. What is not always
realized, or admitted by those who know, is that there has always been a
crisis in software engineering since the inception of computing as a wide-
scale activity from about 1950 onwards. In some periods it was
recognized; in others it was the object of comment and endeavour; in
some epochs it was believed (or asserted) to be solved.

1.2 A short history of software engineering

The programming of non-trivial applications is, without doubt, an
extremely complicated and difficult affair. The fact that a child can
program its PC in something like BASIC does not confute that point — it
confuses it. The control program in the washing machine that has just
flooded the kitchen floor is a few thousand instructions of assembler code,
but it took people a year and a half to develop. The SDI ‘Starwars’
research will require a software system of anything between 10 million
and 100 million source statements of code and must work right (or at least
adequately) first time — unless it is to be tested on a spare planet. Nor will
it be done in BASIC, or at least it is to be hoped not.

What is it that makes programming difficult? The Dictionary of
Computer Science (Glaser et al., 1983) defines a computer and its
programs as:

A device that is capable of carrying out a sequence of operations in
a distincily and explicitly defined manner. The operations are
frequently numerical computations or data manipulations but also
include inputloutput; the operations within the sequence may
depend on data values. The definition of the sequence is called the
program.

By this definition computers and programming are of some antiquity. For
example, Leibnitz in the seventeenth century; Jacquard, Babbage and

6 THE CRAFT OF SOFTWARE ENGINEERING

Hollerith in the nineteenth century; Turing and von Neumann in the mid-
twentieth century, all made substantial contributions to computers as we
know them.

In the period 1939-45 computers, incorporating electrical components
as distinct from mechanical ones, were developed in the United Kingdom
for applications in decryption, and in the United States of America
mainly for computing gunnery tables. By about 1950, computers were
becoming available from several commercial sources, and wide-scale use
of computers — programming in fact — dates effectively from that period.
In the following three and a half decades, computers and their usage went
through many major evolutions. Looked at solely from the viewpoint of
programming and programmers, the history divides into four epochs
correlated with major developments of one kind or another (but not
synonymous with so-called hardware ‘generations’).

Epoch 1 (circa 1950-58) This was the period during which the first
amateur programmers acted as users, programmers and even hardware
engineers, for problem solving in the field of applied science and
engineering. They used large and expensive ‘mainframe’ computers and
programmed them in number code or simple mnemonic assembler code.
This programming was often looked on as a fine intellectual sport for
physicists, chemists, mathematicians and engineers of various kinds. It
was certainly a lot of fun, and these (we!) first ‘amateur programmers’
produced a lot of very clever programs which were for the writer’'s own
use, and were then either thrown away or left until needed again by their
author.

Epoch 2 (circa 1959-67) This was the period during which high-level
languages were first introduced and then extensively used, and operating
systems were evolved to make the use of facilities more efficient. Off-line
input/output (character) orientated machines were brought out to delimit
the processors from these functions, and as a result the world of business
data processing (DP) was added to that of applied science and
engineering computations. Formal career structures began to be seen for
operators, coders, designers and systems analysts in this period, and the
user (the amateur programmers from Epoch 1 and new users in the DP
sector), became removed at several stages from the equipment and its
programs. The motive for developing high-level languages, such as
FORTRAN, ALGOL and COBOL, at that time was to make the task of
programming easier for the users themselves. Thus instead of having to
write something like:

0 00000001010 101 000000001010100011101
in binary number code, or

+ 21, 5, 5405

INTRODUCTION 7

in decimal number code, or
ADD B, 5 ’

in mnemoni¢ assembler, one could write statements such as
D= (A + BO)*C

in a high-level language, and this would be translated by a compiler in the
computer operating system software into something like:

CLA A
ADD B, 5 (which is the ‘instruction’ given earlier in different forms)
MPY C
STO D

This assembler code would then be further translated into binary machine
code and executed on the computer (i.e. it would regulate the operations
of hardware circuitry in a prescribed manner). Coders tended to use high-
level languages increasingly. Users faced with learning several languages
and the increasing complexities of operating systems began to specify the
problems to be solved rather than to be simply the programmers and
co.nputer operators themselves. Around this time the ‘virtual machine’
concept was developed, in which the computer was seen as being defined
by the procedures of the operating systems software and its programming
languages. The extension of these facilities progressively cocooned the
hardware within increasingly large and complex software regimes.

IBM brought out a range of computers in this epoch — the ‘360 series’
- intended to be modular (i.e. compatible at the software level, from the
small and cheap level of the range upwards); to have ‘time sharing’
facilities for simultaneous multi-user operations; and to possess a full set
of virtual-machine features of the operating system and several high-level
languages such as COBOL, FORTRAN, PL/I etc. The 360 was an
immense commercial success but its operating software — OS 360 — was
something of a mess. It had taken 50006000 person years to develop and
cost $50 million per annum during its development (source: E.E. David
in Naur and Randell, 1968). ’

. The first general appreciation of a crisis in programming resulted. If
the world’s most prominent manufacturer couldn’t get it right, who
could? The first NATO-sponsored conference on ‘Software Engineering’
was held (in 1968) as a result. The proceedings of these conferences make
salutary reading, there being much of value for the present epoch in the
questions raised and the answers given; they may be found in Buxton et
al. (1969); and Naur and Randell (1968).

Epoch 3 (circa 1968-78) This was the period during which the
minicomputer was invented and became widely used. For the first time
the computer could be taken to the problem. Attempts to understand and

